the 1 isometry classes of irreducible [11,1,11]_2 codes are:

code no       1:
================
1 1 1 1 1 1 1 1 1 1 1
the automorphism group has order 39916800
and is strongly generated by the following 13 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
0 0 1 0 0 0 0 0 0 0 
, 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 1 0 0 0 0 0 0 0 0 
, 
1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 1 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(10, 11), 
(9, 10), 
(8, 9), 
(7, 10)(8, 9), 
(6, 9, 7), 
(6, 10, 8)(7, 9), 
(5, 7, 8, 9, 6), 
(4, 7, 8, 6, 9, 5), 
(3, 8, 6, 5, 7, 9, 4), 
(2, 8, 3, 7, 4, 6), 
(2, 5, 7, 6, 4, 3, 10, 8, 11), 
(1, 7, 5, 8, 9, 2, 10)(4, 6), 
(1, 3, 5, 11)(2, 9, 10, 8, 6)(4, 7)
orbits: { 1, 10, 11, 9, 7, 6, 3, 2, 8, 5, 4 }