the 1 isometry classes of irreducible [11,2,7]_2 codes are:

code no       1:
================
1 1 1 1 1 1 0 0 0 1 0
1 1 1 0 0 0 1 1 1 0 1
the automorphism group has order 6912
and is strongly generated by the following 12 elements:
(
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 
1 1 1 0 0 0 1 1 1 
, 
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 
1 1 1 0 0 0 1 1 1 
0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 
1 1 1 0 0 0 1 1 1 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 1 0 0 
, 
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
1 1 1 1 1 1 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 1 0 0 
, 
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 
1 1 1 0 0 0 1 1 1 
0 0 0 0 0 1 0 0 0 
1 1 1 1 1 1 0 0 0 
0 0 0 0 1 0 0 0 0 
, 
1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 0 
, 
0 1 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
1 1 1 1 1 1 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(9, 11), 
(8, 9), 
(8, 9, 11), 
(7, 8), 
(7, 9, 11), 
(6, 10), 
(5, 10)(7, 8), 
(4, 10)(7, 8, 9), 
(4, 6, 5)(7, 9), 
(4, 11, 6, 7, 10, 8)(5, 9), 
(2, 3)(4, 5)(7, 9, 8), 
(1, 2)(4, 6, 10, 5)(7, 8, 9)
orbits: { 1, 2, 3 }, { 4, 10, 5, 8, 6, 7, 9, 11 }