the 8 isometry classes of irreducible [11,3,5]_2 codes are:

code no       1:
================
1 1 1 1 1 1 1 1 1 0 0
1 1 1 1 0 0 0 0 0 1 0
1 1 0 0 1 1 0 0 0 0 1
the automorphism group has order 96
and is strongly generated by the following 6 elements:
(
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 
1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 
1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 1 
, 
0 1 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 
1 1 1 1 1 1 1 1 
)
acting on the columns of the generator matrix as follows (in order):
(8, 9), 
(7, 9, 8), 
(5, 6), 
(3, 4)(5, 6)(7, 8), 
(3, 5)(4, 6)(7, 9)(10, 11), 
(1, 2)(7, 9, 8)
orbits: { 1, 2 }, { 3, 4, 5, 6 }, { 7, 8, 9 }, { 10, 11 }

code no       2:
================
1 1 1 1 1 1 1 1 1 0 0
1 1 1 1 0 0 0 0 0 1 0
1 1 1 0 1 1 0 0 0 0 1
the automorphism group has order 144
and is strongly generated by the following 6 elements:
(
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 
1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
, 
0 1 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 0 
, 
0 0 0 0 0 0 1 0 
1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 1 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 1 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(8, 9), 
(7, 8), 
(5, 6)(7, 8), 
(2, 3), 
(1, 2)(5, 6)(7, 8, 9), 
(1, 8, 3, 9, 2, 7)(10, 11)
orbits: { 1, 2, 7, 3, 9, 8 }, { 4 }, { 5, 6 }, { 10, 11 }

code no       3:
================
1 1 1 1 0 0 0 0 1 0 0
1 1 0 0 1 1 0 0 0 1 0
1 1 0 0 0 0 1 1 0 0 1
the automorphism group has order 2592
and is strongly generated by the following 10 elements:
(
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 
1 1 0 0 0 0 1 1 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
1 1 0 0 0 0 1 1 
0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
1 1 0 0 1 1 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 
1 1 0 0 0 0 1 1 
1 1 0 0 1 1 0 0 
0 0 0 0 1 0 0 0 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
1 1 1 1 0 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
1 1 0 0 1 1 0 0 
0 0 0 0 0 1 0 0 
1 1 1 1 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
1 1 0 0 0 0 1 1 
0 0 0 0 0 0 1 0 
1 1 0 0 1 1 0 0 
0 0 0 0 0 1 0 0 
1 1 1 1 0 0 0 0 
0 0 0 1 0 0 0 0 
, 
0 1 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(8, 11), 
(7, 8), 
(7, 11), 
(6, 10)(7, 8), 
(5, 6), 
(5, 8, 10, 7)(6, 11), 
(4, 9)(5, 6), 
(3, 10)(4, 6)(5, 9)(7, 8), 
(3, 11)(4, 8, 9, 7)(5, 10), 
(1, 2)(5, 6)(7, 8)
orbits: { 1, 2 }, { 3, 10, 11, 6, 8, 5, 7, 4, 9 }

code no       4:
================
1 1 1 1 0 0 0 0 1 0 0
1 1 0 0 1 1 0 0 0 1 0
1 1 1 0 0 0 1 1 0 0 1
the automorphism group has order 288
and is strongly generated by the following 7 elements:
(
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 
1 1 1 0 0 0 1 1 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
1 1 0 0 1 1 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 
1 1 0 0 1 1 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
1 1 1 1 0 0 0 0 
0 0 0 0 1 0 0 0 
1 1 0 0 1 1 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
, 
0 1 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 
, 
0 0 0 1 0 0 0 0 
1 1 1 1 0 0 0 0 
0 0 1 0 0 0 0 0 
1 0 0 0 0 0 0 0 
1 1 1 0 0 0 1 1 
0 0 0 0 0 0 1 0 
1 1 0 0 1 1 0 0 
0 0 0 0 1 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(8, 11), 
(7, 8), 
(6, 10), 
(5, 10, 6), 
(4, 9)(6, 10), 
(1, 2)(5, 6)(7, 8), 
(1, 4)(2, 9)(5, 8, 10, 7, 6, 11)
orbits: { 1, 2, 4, 9 }, { 3 }, { 5, 6, 11, 10, 7, 8 }

code no       5:
================
1 1 1 1 0 0 0 0 1 0 0
1 1 0 0 1 1 0 0 0 1 0
0 0 1 0 1 0 1 1 0 0 1
the automorphism group has order 96
and is strongly generated by the following 7 elements:
(
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 
0 0 1 0 1 0 1 1 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 1 0 1 0 1 1 
0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
1 1 0 0 1 1 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
1 1 1 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 
1 1 0 0 1 1 0 0 
0 0 1 0 0 0 0 0 
1 1 1 1 0 0 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
, 
0 1 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
1 1 1 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(8, 11), 
(7, 8), 
(7, 11), 
(6, 10), 
(4, 9), 
(3, 5)(4, 10)(6, 9), 
(1, 2)(4, 9)(7, 8)
orbits: { 1, 2 }, { 3, 5 }, { 4, 9, 10, 6 }, { 7, 8, 11 }

code no       6:
================
1 1 1 1 0 0 0 0 1 0 0
1 1 0 0 1 1 0 0 0 1 0
1 0 1 0 1 0 1 1 0 0 1
the automorphism group has order 48
and is strongly generated by the following 6 elements:
(
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 
1 0 1 0 1 0 1 1 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
1 0 1 0 1 0 1 1 
0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
1 1 0 0 1 1 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
1 1 1 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 
1 1 0 0 1 1 0 0 
0 0 1 0 0 0 0 0 
1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(8, 11), 
(7, 8), 
(7, 11), 
(6, 10), 
(4, 9), 
(3, 5)(4, 10)(6, 9)(7, 8)
orbits: { 1 }, { 2 }, { 3, 5 }, { 4, 9, 10, 6 }, { 7, 8, 11 }

code no       7:
================
1 1 1 1 0 0 0 0 1 0 0
1 0 0 0 1 1 1 0 0 1 0
0 1 1 0 1 1 0 1 0 0 1
the automorphism group has order 128
and is strongly generated by the following 6 elements:
(
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 
0 1 1 0 1 1 0 1 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
1 1 1 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 
1 1 1 1 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 1 0 0 0 0 0 
1 0 0 0 1 1 1 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
1 0 0 0 1 1 1 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(8, 11), 
(7, 10), 
(5, 6), 
(4, 9), 
(2, 9)(3, 4)(5, 10)(6, 7), 
(2, 5, 3, 6)(4, 7, 9, 10)
orbits: { 1 }, { 2, 9, 6, 4, 7, 5, 3, 10 }, { 8, 11 }

code no       8:
================
1 1 1 1 0 0 0 0 1 0 0
1 1 0 0 1 1 1 0 0 1 0
1 0 1 0 1 1 0 1 0 0 1
the automorphism group has order 96
and is strongly generated by the following 7 elements:
(
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 
1 0 1 0 1 1 0 1 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
1 1 0 0 1 1 1 0 
0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
1 1 1 1 0 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 1 0 0 0 0 0 0 
1 1 1 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 
1 1 0 0 1 1 1 0 
, 
0 1 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 
1 1 0 0 1 1 1 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 
, 
0 0 1 0 0 0 0 0 
0 1 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 
1 0 1 0 1 1 0 1 
0 0 0 0 0 0 0 1 
1 1 0 0 1 1 1 0 
0 0 0 0 0 1 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(8, 11), 
(7, 10), 
(5, 6), 
(4, 9)(5, 6), 
(2, 3)(4, 9)(7, 11, 10, 8), 
(1, 2)(5, 10, 6, 7), 
(1, 3)(5, 11)(6, 8)(7, 10)
orbits: { 1, 2, 3 }, { 4, 9 }, { 5, 6, 7, 11, 10, 8 }