the 2 isometry classes of irreducible [12,2,5]_2 codes are:

code no       1:
================
1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 0 0 0 0 0 0 0 1
the automorphism group has order 120960
and is strongly generated by the following 9 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 0 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
1 1 1 1 1 1 1 1 1 1 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
, 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(10, 11), 
(9, 11), 
(8, 10, 9), 
(7, 11)(8, 10, 9), 
(6, 10, 11), 
(5, 9, 6, 10, 8)(7, 11), 
(3, 4)(5, 6, 8, 10, 7, 9), 
(2, 4)(5, 8, 11, 7, 10, 6, 9), 
(1, 4, 3, 2)(5, 8)(6, 10, 11)(7, 9)
orbits: { 1, 2, 4, 3 }, { 5, 8, 9, 10, 6, 11, 7 }, { 12 }

code no       2:
================
1 1 1 1 0 0 0 0 0 0 1 0
1 1 0 0 1 1 1 1 1 1 0 1
the automorphism group has order 60480
and is strongly generated by the following 11 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 1 0 0 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 0 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 0 0 1 1 1 1 1 1 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
1 1 1 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 1 0 0 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
, 
0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 1 0 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(10, 12), 
(9, 10), 
(8, 10), 
(7, 9), 
(7, 10)(8, 9), 
(6, 8), 
(5, 10)(7, 9), 
(5, 10, 7, 6, 9, 12), 
(4, 11)(7, 10, 8), 
(3, 11, 4)(5, 8, 10)(6, 7, 9), 
(1, 2)(5, 10, 9, 6)
orbits: { 1, 2 }, { 3, 4, 11 }, { 5, 10, 12, 6, 9, 8, 7 }