the 1 isometry classes of irreducible [14,3,8]_2 codes are:

code no       1:
================
1 1 1 1 1 1 1 0 0 0 0 1 0 0
1 1 1 1 0 0 0 1 1 1 0 0 1 0
1 1 0 0 1 1 0 1 1 0 1 0 0 1
the automorphism group has order 21504
and is strongly generated by the following 11 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
1 1 0 0 1 1 0 1 1 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
1 1 1 1 0 0 0 1 1 1 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
1 1 0 0 1 1 0 1 1 0 1 
0 0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
, 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 1 0 0 1 1 0 1 1 0 1 
0 0 0 0 0 0 0 0 0 0 1 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 1 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 13), 
(8, 9)(10, 13), 
(7, 12)(8, 9)(10, 13), 
(5, 6), 
(5, 13)(6, 10)(7, 9, 12, 8), 
(5, 7)(6, 12)(8, 13)(9, 10), 
(3, 4)(5, 8)(6, 9)(7, 13, 12, 10), 
(3, 12, 11, 8, 4, 7, 14, 9)(5, 10)(6, 13), 
(1, 12, 4, 6)(2, 7, 3, 5)(8, 10, 9, 13), 
(1, 4, 11, 2, 3, 14)(5, 6)(7, 13, 8, 12, 10, 9)
orbits: { 1, 6, 14, 5, 10, 12, 9, 13, 4, 11, 7, 3, 8, 2 }