the 39 isometry classes of irreducible [14,4,6]_2 codes are:

code no       1:
================
1 1 1 1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0 0 0 0 1 0 0
1 1 1 0 0 1 1 0 0 0 0 0 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 1
the automorphism group has order 72
and is strongly generated by the following 5 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(10, 11), 
(9, 11, 10), 
(4, 6)(5, 7)(10, 11)(12, 13), 
(3, 6, 4)(5, 7, 8)(12, 13, 14), 
(1, 2)(4, 6)(5, 7)(12, 13)
orbits: { 1, 2 }, { 3, 4, 6 }, { 5, 7, 8 }, { 9, 10, 11 }, { 12, 13, 14 }

code no       2:
================
1 1 1 1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0 0 0 0 1 0 0
1 1 1 0 0 1 1 0 0 0 0 0 1 0
1 0 0 1 1 1 0 1 0 0 0 0 0 1
the automorphism group has order 96
and is strongly generated by the following 6 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
, 
1 1 1 1 1 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 0 0 1 1 1 0 1 0 0 
1 1 1 0 0 1 1 0 0 0 
1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(10, 11), 
(9, 11, 10), 
(4, 5), 
(2, 3)(9, 11), 
(2, 5)(3, 4)(7, 8)(9, 10)(13, 14), 
(1, 12)(7, 14)(8, 13)(9, 10, 11)
orbits: { 1, 12 }, { 2, 3, 5, 4 }, { 6 }, { 7, 8, 14, 13 }, { 9, 10, 11 }

code no       3:
================
1 1 1 1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0 0 0 0 1 0 0
1 1 1 0 0 1 1 0 0 0 0 0 1 0
1 1 0 1 0 0 0 1 1 0 0 0 0 1
the automorphism group has order 32
and is strongly generated by the following 5 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 
, 
0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 1 1 1 1 1 1 1 1 1 
)
acting on the columns of the generator matrix as follows (in order):
(10, 11), 
(8, 9), 
(6, 7)(8, 9), 
(3, 4)(6, 8)(7, 9)(13, 14), 
(1, 2)(10, 11)
orbits: { 1, 2 }, { 3, 4 }, { 5 }, { 6, 7, 8, 9 }, { 10, 11 }, { 12 }, { 13, 14 }

code no       4:
================
1 1 1 1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0 0 0 0 1 0 0
1 1 1 0 0 1 1 0 0 0 0 0 1 0
1 0 0 1 0 1 0 1 1 0 0 0 0 1
the automorphism group has order 16
and is strongly generated by the following 4 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 
1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 
1 1 1 1 1 1 1 1 1 1 
)
acting on the columns of the generator matrix as follows (in order):
(10, 11), 
(8, 9)(10, 11), 
(4, 6)(5, 7)(10, 11)(12, 13), 
(2, 3)(4, 6)(5, 7)(8, 9)(10, 11)(12, 13)
orbits: { 1 }, { 2, 3 }, { 4, 6 }, { 5, 7 }, { 8, 9 }, { 10, 11 }, { 12, 13 }, { 14 }

code no       5:
================
1 1 1 1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0 0 0 0 1 0 0
1 1 0 0 0 1 1 1 0 0 0 0 1 0
0 0 1 1 0 1 1 0 1 0 0 0 0 1
the automorphism group has order 192
and is strongly generated by the following 7 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 1 1 0 1 1 0 1 0 
1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
1 1 1 1 1 1 1 1 1 1 
, 
0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 
)
acting on the columns of the generator matrix as follows (in order):
(10, 11), 
(6, 7)(10, 11), 
(5, 12)(8, 13)(9, 14)(10, 11), 
(3, 4)(10, 11), 
(3, 6)(4, 7)(5, 8)(10, 11)(12, 13), 
(1, 2)(3, 4), 
(1, 4, 7)(2, 3, 6)(5, 9, 8)(10, 11)(12, 14, 13)
orbits: { 1, 2, 7, 6, 4, 3 }, { 5, 12, 8, 13, 9, 14 }, { 10, 11 }

code no       6:
================
1 1 1 1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0 0 0 0 1 0 0
1 1 0 0 0 1 1 1 0 0 0 0 1 0
1 0 1 1 0 1 1 0 1 0 0 0 0 1
the automorphism group has order 48
and is strongly generated by the following 5 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
1 1 1 1 1 1 1 1 1 1 
, 
0 0 0 0 0 0 0 1 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 
1 1 1 1 1 1 1 1 1 1 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 1 0 0 0 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(10, 11), 
(6, 7), 
(3, 4)(6, 7)(10, 11), 
(3, 6, 4, 7)(5, 8)(10, 11)(12, 13), 
(1, 8)(3, 10)(4, 11)(6, 7)(12, 14)
orbits: { 1, 8, 5 }, { 2 }, { 3, 4, 7, 10, 6, 11 }, { 9 }, { 12, 13, 14 }

code no       7:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0
1 1 1 0 0 0 0 0 1 1 0 0 0 1
the automorphism group has order 576
and is strongly generated by the following 8 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 1 1 0 0 0 0 0 1 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 1 0 0 0 0 0 1 1 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
1 1 0 1 0 1 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
0 0 0 0 0 0 1 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(10, 14), 
(9, 10), 
(9, 14), 
(8, 13), 
(7, 12)(9, 10), 
(5, 11), 
(4, 6)(5, 12)(7, 11), 
(1, 7)(2, 12)(3, 6)(5, 11)(9, 10)
orbits: { 1, 7, 12, 11, 5, 2 }, { 3, 6, 4 }, { 8, 13 }, { 9, 10, 14 }

code no       8:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0
1 0 1 1 0 0 0 0 1 1 0 0 0 1
the automorphism group has order 96
and is strongly generated by the following 7 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 0 1 1 0 0 0 0 1 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 0 1 1 0 0 0 0 1 1 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
1 1 0 1 0 1 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 0 1 0 1 0 1 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(10, 14), 
(9, 10), 
(9, 14), 
(8, 13), 
(7, 12), 
(5, 11)(9, 10), 
(3, 4)(5, 11)(7, 8, 12, 13)
orbits: { 1 }, { 2 }, { 3, 4 }, { 5, 11 }, { 6 }, { 7, 12, 13, 8 }, { 9, 10, 14 }

code no       9:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0
1 0 1 0 1 0 0 0 1 1 0 0 0 1
the automorphism group has order 96
and is strongly generated by the following 7 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 0 1 0 1 0 0 0 1 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 0 1 0 1 0 0 0 1 1 
0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
1 1 0 1 0 1 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 0 1 0 1 0 1 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
, 
0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(10, 14), 
(9, 10), 
(9, 10, 14), 
(8, 13), 
(7, 12), 
(1, 2)(3, 4)(5, 11)(7, 13)(8, 12)(9, 10), 
(1, 5)(2, 11)(7, 13, 12, 8)(9, 10)
orbits: { 1, 2, 5, 11 }, { 3, 4 }, { 6 }, { 7, 12, 13, 8 }, { 9, 10, 14 }

code no      10:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0
0 0 1 1 0 1 0 0 1 1 0 0 0 1
the automorphism group has order 2304
and is strongly generated by the following 10 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 1 1 0 1 0 0 1 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 1 1 0 1 0 0 1 1 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
1 1 0 1 0 1 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
, 
1 1 0 1 0 1 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(10, 14), 
(9, 10), 
(9, 14), 
(8, 13), 
(7, 12), 
(5, 11), 
(4, 6)(5, 12)(7, 11), 
(3, 6)(5, 8)(7, 12)(11, 13), 
(1, 2)(5, 11)(9, 10), 
(1, 7, 11, 13)(2, 12, 5, 8)(3, 4)
orbits: { 1, 2, 13, 8, 11, 5, 7, 12 }, { 3, 6, 4 }, { 9, 10, 14 }

code no      11:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0
1 0 1 1 0 1 0 0 1 1 0 0 0 1
the automorphism group has order 288
and is strongly generated by the following 8 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 0 1 1 0 1 0 0 1 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 0 1 1 0 1 0 0 1 1 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
1 1 0 1 0 1 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
1 1 0 1 0 1 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 0 1 0 1 0 1 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(10, 14), 
(9, 10), 
(9, 14), 
(8, 13)(9, 10), 
(7, 12), 
(5, 11)(7, 12)(8, 13)(9, 10), 
(4, 6)(5, 12, 11, 7), 
(3, 4, 6)(5, 13, 7, 11, 8, 12)(9, 10)
orbits: { 1 }, { 2 }, { 3, 6, 4 }, { 5, 11, 7, 12, 13, 8 }, { 9, 10, 14 }

code no      12:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0
1 0 0 0 1 1 0 0 1 1 0 0 0 1
the automorphism group has order 96
and is strongly generated by the following 7 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 0 0 0 1 1 0 0 1 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 0 0 0 1 1 0 0 1 1 
0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
1 1 0 1 0 1 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
, 
0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(10, 14), 
(9, 10), 
(9, 10, 14), 
(8, 13), 
(7, 12), 
(3, 4)(7, 8)(9, 10)(12, 13), 
(1, 5)(2, 11)(3, 4)(7, 12)(9, 10)
orbits: { 1, 5 }, { 2, 11 }, { 3, 4 }, { 6 }, { 7, 12, 8, 13 }, { 9, 10, 14 }

code no      13:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0
1 0 0 0 1 0 1 0 1 1 0 0 0 1
the automorphism group has order 72
and is strongly generated by the following 6 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 0 0 0 1 0 1 0 1 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 0 0 0 1 0 1 0 1 1 
0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
1 1 0 1 0 1 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
1 1 0 1 0 1 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
, 
0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 1 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(10, 14), 
(9, 10), 
(9, 10, 14), 
(8, 13)(9, 10), 
(4, 6)(5, 7)(8, 13)(9, 10)(11, 12), 
(1, 7, 5)(2, 12, 11)(3, 6, 4)(9, 10)
orbits: { 1, 5, 7 }, { 2, 11, 12 }, { 3, 4, 6 }, { 8, 13 }, { 9, 10, 14 }

code no      14:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0
1 0 0 0 1 0 1 1 1 1 0 0 0 1
the automorphism group has order 288
and is strongly generated by the following 7 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 0 0 0 1 0 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 0 0 0 1 0 1 1 1 1 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
1 1 0 1 0 1 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
, 
0 0 0 0 0 0 0 1 0 0 
1 1 0 1 0 1 0 1 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(10, 14), 
(9, 10), 
(9, 14), 
(4, 6)(5, 7)(11, 12), 
(3, 6)(5, 8)(11, 13), 
(1, 2)(4, 6)(5, 12)(7, 11)(8, 13)(9, 10), 
(1, 7, 5, 8)(2, 12, 11, 13)(3, 4)
orbits: { 1, 2, 8, 13, 5, 11, 7, 12 }, { 3, 6, 4 }, { 9, 10, 14 }

code no      15:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0
1 0 1 0 1 0 1 1 1 1 0 0 0 1
the automorphism group has order 288
and is strongly generated by the following 7 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 0 1 0 1 0 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 0 1 0 1 0 1 1 1 1 
0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 0 1 0 1 0 1 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
1 1 0 1 0 1 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
, 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(10, 14), 
(9, 10), 
(9, 10, 14), 
(4, 6)(5, 7)(11, 12), 
(3, 6, 4)(5, 7, 13)(8, 11, 12), 
(1, 2)(5, 11)(7, 12)(8, 13)(9, 10), 
(1, 12, 11)(2, 7, 5)(3, 6, 4)
orbits: { 1, 2, 11, 5, 12, 8, 7, 13 }, { 3, 4, 6 }, { 9, 10, 14 }

code no      16:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0
1 1 1 0 0 0 0 1 1 0 0 0 1 0
1 0 0 1 0 1 0 1 0 1 0 0 0 1
the automorphism group has order 768
and is strongly generated by the following 10 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 0 0 1 0 1 0 1 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 1 0 0 0 0 1 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 1 0 0 0 0 1 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 1 0 0 0 0 1 1 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 1 0 0 0 0 1 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 1 1 0 0 0 0 1 1 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(10, 14), 
(9, 13), 
(7, 12)(9, 13), 
(6, 8)(7, 13, 12, 9), 
(5, 11)(7, 12), 
(4, 6)(5, 12)(7, 11), 
(4, 6, 8)(5, 7, 13)(9, 11, 12), 
(2, 3)(7, 12), 
(1, 6)(2, 12, 3, 7)(5, 11)(9, 13), 
(1, 6, 8)(2, 12, 9)(3, 7, 13)
orbits: { 1, 6, 8, 4 }, { 2, 3, 7, 9, 12, 13, 11, 5 }, { 10, 14 }

code no      17:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0
1 1 1 0 0 0 0 1 1 0 0 0 1 0
1 1 0 1 0 1 0 1 0 1 0 0 0 1
the automorphism group has order 768
and is strongly generated by the following 8 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 1 0 1 0 1 0 1 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 1 0 0 0 0 1 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 1 0 0 0 0 1 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 
, 
0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 
, 
0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 1 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(10, 14), 
(9, 13), 
(7, 12), 
(6, 8)(7, 13, 12, 9), 
(5, 11)(7, 12)(9, 13), 
(4, 6, 8)(5, 7, 13, 11, 12, 9), 
(1, 2)(4, 8, 6)(5, 13, 12, 11, 9, 7), 
(1, 7, 13, 11, 2, 12, 9, 5)(3, 6, 8, 4)
orbits: { 1, 2, 5, 11, 9, 7, 13, 12 }, { 3, 4, 8, 6 }, { 10, 14 }

code no      18:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0
1 1 0 1 0 0 0 1 1 0 0 0 1 0
1 1 0 0 0 1 0 1 0 1 0 0 0 1
the automorphism group has order 256
and is strongly generated by the following 8 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 1 0 0 0 1 0 1 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 0 1 0 0 0 1 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 0 0 0 1 0 1 0 1 
0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 0 1 0 0 0 1 1 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 0 1 0 0 0 1 1 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
, 
0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 0 1 0 0 0 1 1 0 
0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(10, 14), 
(9, 13), 
(7, 12), 
(5, 11), 
(4, 6)(5, 12, 11, 7)(9, 10, 13, 14), 
(3, 4)(6, 8)(7, 9, 12, 13), 
(3, 8)(5, 9, 11, 13)(7, 10)(12, 14), 
(1, 2)(5, 11)(7, 12)(9, 13)
orbits: { 1, 2 }, { 3, 4, 8, 6 }, { 5, 11, 7, 13, 12, 9, 10, 14 }

code no      19:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0
1 1 0 1 0 0 0 1 1 0 0 0 1 0
1 0 1 0 0 1 0 1 0 1 0 0 0 1
the automorphism group has order 32
and is strongly generated by the following 5 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 0 1 0 0 1 0 1 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 0 1 0 0 0 1 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 0 1 0 0 1 0 1 0 1 
0 0 0 0 0 0 0 0 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(10, 14), 
(9, 13), 
(7, 12), 
(5, 11), 
(2, 3)(4, 6)(5, 7)(9, 10, 13, 14)(11, 12)
orbits: { 1 }, { 2, 3 }, { 4, 6 }, { 5, 11, 7, 12 }, { 8 }, { 9, 13, 14, 10 }

code no      20:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0
1 1 0 1 0 0 0 1 1 0 0 0 1 0
0 0 1 1 0 1 0 1 0 1 0 0 0 1
the automorphism group has order 128
and is strongly generated by the following 6 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 1 1 0 1 0 1 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 0 1 0 0 0 1 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 0 1 0 0 0 1 1 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(10, 14), 
(9, 13), 
(7, 12), 
(5, 11)(7, 12), 
(3, 4)(6, 8)(7, 9)(12, 13), 
(1, 11)(2, 5)(6, 8)(7, 9, 12, 13)
orbits: { 1, 11, 5, 2 }, { 3, 4 }, { 6, 8 }, { 7, 12, 9, 13 }, { 10, 14 }

code no      21:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0
1 1 0 1 0 0 0 1 1 0 0 0 1 0
1 0 0 0 1 1 0 1 0 1 0 0 0 1
the automorphism group has order 32
and is strongly generated by the following 5 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 0 0 0 1 1 0 1 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 0 1 0 0 0 1 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 0 1 0 0 0 1 1 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 
, 
0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(10, 14), 
(9, 13), 
(7, 12), 
(3, 4)(6, 8)(7, 9, 12, 13), 
(1, 5)(2, 11)(3, 4)
orbits: { 1, 5 }, { 2, 11 }, { 3, 4 }, { 6, 8 }, { 7, 12, 13, 9 }, { 10, 14 }

code no      22:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0
1 1 0 1 0 0 0 1 1 0 0 0 1 0
1 0 1 0 1 1 0 1 0 1 0 0 0 1
the automorphism group has order 32
and is strongly generated by the following 5 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 0 1 0 1 1 0 1 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 0 1 0 0 0 1 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(10, 14), 
(9, 13), 
(7, 12), 
(1, 11)(2, 5)(3, 4)(7, 12), 
(1, 2)(3, 4)(5, 11)(6, 8)(7, 9)(12, 13)
orbits: { 1, 11, 2, 5 }, { 3, 4 }, { 6, 8 }, { 7, 12, 9, 13 }, { 10, 14 }

code no      23:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0
1 0 0 1 0 1 0 1 1 0 0 0 1 0
0 1 0 1 0 1 0 1 0 1 0 0 0 1
the automorphism group has order 128
and is strongly generated by the following 6 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 1 0 1 0 1 0 1 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 0 0 1 0 1 0 1 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 0 0 1 0 1 0 1 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 0 0 1 0 1 0 1 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 1 0 0 0 0 0 0 0 0 
0 1 0 1 0 1 0 1 0 1 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(10, 14), 
(9, 13), 
(7, 12)(9, 13), 
(5, 11)(7, 12)(9, 13), 
(4, 6)(5, 7)(11, 12), 
(1, 6, 2, 4)(3, 8)(5, 9, 7, 10, 11, 13, 12, 14)
orbits: { 1, 4, 6, 2 }, { 3, 8 }, { 5, 11, 7, 14, 12, 10, 9, 13 }

code no      24:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0
1 0 0 1 0 1 0 1 1 0 0 0 1 0
0 1 1 1 0 1 0 1 0 1 0 0 0 1
the automorphism group has order 192
and is strongly generated by the following 7 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 1 1 1 0 1 0 1 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 0 0 1 0 1 0 1 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 0 0 1 0 1 0 1 1 0 
0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(10, 14), 
(9, 13), 
(7, 12), 
(5, 11)(7, 12), 
(4, 6)(5, 12)(7, 11), 
(2, 3), 
(1, 6, 4)(2, 7, 11)(3, 12, 5)(9, 13)
orbits: { 1, 4, 6 }, { 2, 3, 11, 5, 7, 12 }, { 8 }, { 9, 13 }, { 10, 14 }

code no      25:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0
1 0 0 1 0 1 0 1 1 0 0 0 1 0
0 1 0 0 1 1 0 1 0 1 0 0 0 1
the automorphism group has order 32
and is strongly generated by the following 5 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 1 0 0 1 1 0 1 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 0 0 1 0 1 0 1 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 1 0 0 1 1 0 1 0 1 
0 0 0 0 0 0 0 0 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(10, 14), 
(9, 13), 
(7, 12), 
(1, 4)(2, 5)(3, 11), 
(1, 2)(4, 5)(7, 12)(9, 10, 13, 14)
orbits: { 1, 4, 2, 5 }, { 3, 11 }, { 6 }, { 7, 12 }, { 8 }, { 9, 13, 14, 10 }

code no      26:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0
1 0 0 1 0 1 0 1 1 0 0 0 1 0
0 1 0 0 1 0 1 1 0 1 0 0 0 1
the automorphism group has order 48
and is strongly generated by the following 5 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 1 0 0 1 0 1 1 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 0 0 1 0 1 0 1 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 1 0 0 1 0 1 1 0 1 
1 0 0 1 0 1 0 1 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(10, 14), 
(9, 13), 
(4, 6)(5, 7)(11, 12), 
(1, 6)(2, 7)(3, 12), 
(1, 7)(2, 6)(3, 12)(4, 5)(9, 14)(10, 13)
orbits: { 1, 6, 7, 4, 2, 5 }, { 3, 12, 11 }, { 8 }, { 9, 13, 14, 10 }

code no      27:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0
1 0 0 1 0 1 0 1 1 0 0 0 1 0
1 1 0 0 1 0 1 1 0 1 0 0 0 1
the automorphism group has order 24
and is strongly generated by the following 4 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 1 0 0 1 0 1 1 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 0 0 1 0 1 0 1 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(10, 14), 
(9, 13), 
(4, 6)(5, 7)(11, 12), 
(1, 6)(2, 12)(3, 7)
orbits: { 1, 6, 4 }, { 2, 12, 11 }, { 3, 7, 5 }, { 8 }, { 9, 13 }, { 10, 14 }

code no      28:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0
1 1 0 1 0 1 0 1 1 0 0 0 1 0
1 0 1 1 0 1 0 1 0 1 0 0 0 1
the automorphism group has order 64
and is strongly generated by the following 6 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 0 1 1 0 1 0 1 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 0 1 0 1 0 1 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 0 1 1 0 1 0 1 0 1 
1 1 0 1 0 1 0 1 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(10, 14), 
(9, 13), 
(7, 12), 
(5, 11)(7, 12), 
(4, 6)(5, 7, 11, 12), 
(2, 3)(7, 12)(9, 14)(10, 13)
orbits: { 1 }, { 2, 3 }, { 4, 6 }, { 5, 11, 12, 7 }, { 8 }, { 9, 13, 14, 10 }

code no      29:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0
1 1 0 1 0 1 0 1 1 0 0 0 1 0
1 0 1 0 1 1 0 1 0 1 0 0 0 1
the automorphism group has order 32
and is strongly generated by the following 5 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 0 1 0 1 1 0 1 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 0 1 0 1 0 1 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 0 1 0 1 0 1 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 0 1 0 1 1 0 1 0 1 
1 1 0 1 0 1 0 1 1 0 
, 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(10, 14), 
(9, 13), 
(7, 12)(9, 13), 
(2, 3)(4, 5)(7, 12)(9, 14)(10, 13), 
(1, 11)(2, 5)(3, 4)(7, 12)
orbits: { 1, 11 }, { 2, 3, 5, 4 }, { 6 }, { 7, 12 }, { 8 }, { 9, 13, 14, 10 }

code no      30:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0
1 1 0 1 0 1 0 1 1 0 0 0 1 0
1 0 1 0 1 0 1 1 0 1 0 0 0 1
the automorphism group has order 48
and is strongly generated by the following 5 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 0 1 0 1 0 1 1 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 0 1 0 1 0 1 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 0 1 0 1 0 1 1 0 1 
1 1 0 1 0 1 0 1 1 0 
, 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 0 1 0 1 0 1 1 0 
0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(10, 14), 
(9, 13), 
(4, 6)(5, 7)(11, 12), 
(2, 3)(4, 7)(5, 6)(9, 14)(10, 13)(11, 12), 
(1, 11, 12)(2, 5, 7)(3, 4, 6)(9, 13)
orbits: { 1, 12, 11 }, { 2, 3, 7, 6, 5, 4 }, { 8 }, { 9, 13, 14, 10 }

code no      31:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 0 0 0 1 1 1 0 0 0 1 0 0
0 0 1 1 0 1 1 0 1 0 0 0 1 0
1 1 1 1 0 1 1 0 0 1 0 0 0 1
the automorphism group has order 21504
and is strongly generated by the following 12 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 1 1 1 0 1 1 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 1 0 
1 1 1 1 0 1 1 0 0 1 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 1 0 0 0 
1 1 1 1 0 1 1 0 0 1 
0 0 1 1 0 1 1 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 
1 1 1 1 0 1 1 0 0 1 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
1 1 0 0 0 1 1 1 0 0 
, 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 1 0 
0 0 1 0 0 0 0 0 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 1 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 1 1 1 0 1 1 0 0 1 
0 0 0 0 0 0 0 0 0 1 
1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(10, 14), 
(9, 13), 
(8, 12), 
(6, 7), 
(6, 9, 7, 13)(8, 10, 12, 14), 
(6, 12, 7, 8)(9, 14)(10, 13), 
(5, 11)(8, 12)(9, 13), 
(3, 7, 4, 6)(5, 12, 11, 8), 
(3, 5, 4, 11)(6, 8)(7, 12), 
(3, 12, 10)(4, 8, 14)(5, 6, 13, 11, 7, 9), 
(1, 12, 6)(2, 8, 7)(3, 5, 9, 4, 11, 13), 
(1, 7, 13, 8, 4, 11, 10, 2, 6, 9, 12, 3, 5, 14)
orbits: { 1, 6, 14, 7, 13, 8, 4, 5, 12, 2, 10, 9, 3, 11 }

code no      32:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 0 0 0 1 1 1 0 0 0 1 0 0
0 0 1 1 0 1 1 0 1 0 0 0 1 0
0 0 1 0 1 1 0 1 0 1 0 0 0 1
the automorphism group has order 384
and is strongly generated by the following 9 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 1 0 1 1 0 1 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 1 1 0 1 1 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 1 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 
, 
0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
0 0 1 0 1 1 0 1 0 1 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 1 1 0 1 1 0 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(10, 14), 
(9, 13), 
(4, 5)(7, 8)(9, 14, 13, 10), 
(3, 6)(4, 7)(5, 8)(11, 12), 
(3, 8)(4, 12)(5, 6)(7, 11), 
(3, 7)(4, 6)(5, 12)(8, 11), 
(1, 13)(2, 9)(3, 7, 8, 11)(4, 6, 12, 5), 
(1, 2), 
(1, 9, 14)(2, 13, 10)(3, 8, 7)(4, 5, 12)
orbits: { 1, 13, 2, 14, 9, 10 }, { 3, 6, 8, 7, 11, 5, 4, 12 }

code no      33:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 0 0 0 1 1 1 0 0 0 1 0 0
0 0 1 1 0 1 1 0 1 0 0 0 1 0
1 0 1 0 1 1 0 1 0 1 0 0 0 1
the automorphism group has order 64
and is strongly generated by the following 6 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 0 1 0 1 1 0 1 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(10, 14), 
(9, 13), 
(3, 6)(4, 7)(5, 8)(11, 12), 
(3, 7)(4, 6)(5, 12)(8, 11), 
(3, 5)(4, 11)(6, 8)(7, 12), 
(1, 2)(3, 4)(5, 11)
orbits: { 1, 2 }, { 3, 6, 7, 5, 4, 8, 12, 11 }, { 9, 13 }, { 10, 14 }

code no      34:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 0 0 0 1 1 1 0 0 0 1 0 0
0 0 1 1 0 1 1 0 1 0 0 0 1 0
1 0 1 0 1 1 0 1 1 1 0 0 0 1
the automorphism group has order 384
and is strongly generated by the following 5 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 0 1 0 1 1 0 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 1 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(10, 14), 
(5, 11)(8, 12)(9, 13), 
(3, 5, 4, 11)(6, 8, 7, 12)(9, 13), 
(3, 7)(4, 6)(5, 12)(8, 11), 
(1, 12, 13, 3)(2, 8, 9, 4)(5, 7)(6, 11)
orbits: { 1, 3, 11, 7, 13, 5, 4, 8, 6, 9, 12, 2 }, { 10, 14 }

code no      35:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 0 0 0 1 1 1 0 0 0 1 0 0
1 0 1 1 0 1 1 0 1 0 0 0 1 0
0 1 1 1 0 1 1 0 0 1 0 0 0 1
the automorphism group has order 3072
and is strongly generated by the following 11 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 1 1 1 0 1 1 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 1 1 1 0 1 1 0 0 1 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 1 0 0 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 1 1 1 0 1 1 0 0 1 
0 0 0 0 0 0 0 0 0 1 
1 0 1 1 0 1 1 0 1 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 1 0 0 0 
, 
0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(10, 14), 
(9, 13), 
(8, 12), 
(6, 7), 
(6, 12, 7, 8)(9, 10)(13, 14), 
(6, 14)(7, 10)(8, 13, 12, 9), 
(5, 11)(6, 7), 
(3, 11)(4, 5)(6, 8)(7, 12), 
(3, 7)(4, 6)(5, 8, 11, 12), 
(3, 6, 14)(4, 7, 10)(5, 8, 13)(9, 11, 12), 
(1, 2)(3, 7, 11, 12)(4, 6, 5, 8)
orbits: { 1, 2 }, { 3, 11, 7, 14, 12, 5, 8, 9, 6, 10, 4, 13 }

code no      36:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 0 0 0 1 1 1 0 0 0 1 0 0
1 0 1 1 0 1 1 0 1 0 0 0 1 0
1 0 1 0 1 1 1 0 0 1 0 0 0 1
the automorphism group has order 256
and is strongly generated by the following 8 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 0 1 0 1 1 1 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
1 1 0 0 0 1 1 1 0 0 
1 0 1 0 1 1 1 0 0 1 
0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
1 0 1 0 1 1 1 0 0 1 
0 0 0 0 0 0 0 0 0 1 
1 0 1 1 0 1 1 0 1 0 
1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 1 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(10, 14), 
(9, 13), 
(8, 12), 
(6, 7), 
(4, 5)(8, 12)(9, 10, 13, 14), 
(3, 11)(4, 5)(6, 8)(7, 12), 
(1, 2)(6, 12, 7, 8), 
(1, 4)(2, 5)(3, 11)(6, 10, 7, 14)(8, 13)(9, 12)
orbits: { 1, 2, 4, 5 }, { 3, 11 }, { 6, 7, 8, 14, 12, 10, 13, 9 }

code no      37:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 0 0 0 1 1 1 0 0 0 1 0 0
1 0 1 1 0 1 1 0 1 0 0 0 1 0
1 0 1 0 1 1 0 1 0 1 0 0 0 1
the automorphism group has order 128
and is strongly generated by the following 7 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 0 1 0 1 1 0 1 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 
1 0 1 1 0 1 1 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(10, 14), 
(9, 13), 
(4, 5)(7, 8)(9, 14, 13, 10), 
(3, 11)(4, 5)(6, 12)(7, 8), 
(3, 6)(4, 7)(5, 8)(11, 12), 
(3, 5)(4, 11)(6, 8)(7, 12), 
(1, 2)(3, 6, 11, 12)(4, 7, 5, 8)
orbits: { 1, 2 }, { 3, 11, 6, 5, 12, 4, 8, 7 }, { 9, 13, 10, 14 }

code no      38:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 0 0 0 1 1 1 0 0 0 1 0 0
1 0 1 1 0 1 1 0 1 0 0 0 1 0
0 0 1 0 1 1 0 0 1 1 0 0 0 1
the automorphism group has order 16
and is strongly generated by the following 4 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 1 0 1 1 0 0 1 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 1 0 1 1 0 0 1 1 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(10, 14), 
(8, 12), 
(1, 2)(3, 5)(4, 11), 
(1, 3)(2, 5)(7, 9)(8, 10, 12, 14)
orbits: { 1, 2, 3, 5 }, { 4, 11 }, { 6 }, { 7, 9 }, { 8, 12, 14, 10 }, { 13 }

code no      39:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 0 0 0 1 1 1 0 0 0 1 0 0
1 0 1 1 0 1 1 0 1 0 0 0 1 0
0 0 1 0 1 1 0 1 1 1 0 0 0 1
the automorphism group has order 32
and is strongly generated by the following 5 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 1 0 1 1 0 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(10, 14), 
(3, 5)(4, 11)(6, 8)(7, 12), 
(3, 7)(4, 6)(5, 12)(8, 11), 
(3, 4)(5, 11)(6, 7)(8, 12), 
(1, 2)(3, 7, 5, 12)(4, 6, 11, 8)
orbits: { 1, 2 }, { 3, 5, 7, 4, 12, 11, 6, 8 }, { 9 }, { 10, 14 }, { 13 }