the 5 isometry classes of irreducible [15,4,7]_2 codes are:

code no       1:
================
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 1 0 0
1 1 1 0 0 0 1 1 1 0 0 0 0 1 0
1 0 0 1 1 0 1 1 0 1 0 0 0 0 1
the automorphism group has order 384
and is strongly generated by the following 7 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
, 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(7, 8), 
(4, 8, 5, 7)(6, 9)(13, 14), 
(2, 3)(4, 5)(11, 12), 
(2, 7)(3, 8)(4, 5)(6, 10)(13, 15), 
(1, 10)(2, 11)(3, 12)(4, 7)(5, 8)(6, 9), 
(1, 6)(2, 5, 3, 4)(7, 12, 8, 11)(9, 10)
orbits: { 1, 10, 6, 9 }, { 2, 3, 7, 11, 4, 8, 12, 5 }, { 13, 14, 15 }

code no       2:
================
1 1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 1 0 0 0 1 1 1 0 0 0 1 0 0
1 0 0 1 1 0 1 1 0 1 0 0 0 1 0
0 1 1 1 1 0 1 1 0 0 1 0 0 0 1
the automorphism group has order 21504
and is strongly generated by the following 13 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 1 1 1 1 0 1 1 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
1 0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 1 0 
0 1 1 1 1 0 1 1 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 1 1 1 1 0 1 1 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
1 0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 1 1 1 0 1 1 0 0 1 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 15), 
(10, 14), 
(9, 13), 
(7, 8)(9, 13), 
(7, 14)(8, 10)(9, 11, 13, 15), 
(7, 9)(8, 13)(10, 11)(14, 15), 
(6, 12)(7, 8), 
(4, 8, 5, 7)(6, 13, 12, 9), 
(4, 6, 5, 12)(7, 13)(8, 9), 
(4, 14, 12, 15, 5, 10, 6, 11)(7, 13, 8, 9), 
(2, 3)(4, 7, 5, 8)(6, 13, 12, 9), 
(2, 13, 10, 5)(3, 9, 14, 4)(6, 7, 12, 8), 
(2, 10, 11, 3, 14, 15)(4, 7, 12, 5, 8, 6)
orbits: { 1 }, { 2, 3, 5, 15, 4, 11, 8, 6, 7, 10, 12, 13, 14, 9 }

code no       3:
================
1 1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 1 0 0 0 1 1 1 0 0 0 1 0 0
1 0 0 1 1 0 1 1 0 1 0 0 0 1 0
1 0 0 1 0 1 1 0 1 0 1 0 0 0 1
the automorphism group has order 384
and is strongly generated by the following 9 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
1 0 0 1 0 1 1 0 1 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
1 0 0 1 0 1 1 0 1 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
1 0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
1 0 0 1 0 1 1 0 1 0 1 
0 0 0 0 0 0 0 0 0 0 1 
1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 15), 
(10, 14), 
(5, 6)(8, 9)(10, 11, 14, 15), 
(4, 6)(5, 12)(7, 9)(8, 13), 
(4, 9)(5, 13)(6, 7)(8, 12), 
(4, 5)(6, 12)(7, 8)(9, 13), 
(2, 3)(4, 6)(5, 12)(7, 9)(8, 13), 
(2, 14, 3, 10)(4, 6, 9, 7)(5, 12, 13, 8), 
(2, 10, 11, 3, 14, 15)(4, 13)(5, 12, 6, 9, 7, 8)
orbits: { 1 }, { 2, 3, 10, 15, 14, 11 }, { 4, 6, 9, 5, 7, 13, 12, 8 }

code no       4:
================
1 1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 1 0 0 0 1 1 1 0 0 0 1 0 0
1 0 0 1 1 0 1 1 0 1 0 0 0 1 0
0 1 0 1 0 1 1 0 1 0 1 0 0 0 1
the automorphism group has order 64
and is strongly generated by the following 6 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 1 0 1 0 1 1 0 1 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 1 0 0 0 0 
1 0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
1 0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 
1 0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 15), 
(10, 14), 
(4, 6)(5, 12)(7, 9)(8, 13)(10, 14), 
(4, 9)(5, 13)(6, 7)(8, 12)(10, 14), 
(4, 8)(5, 7)(6, 13)(9, 12)(10, 14), 
(1, 2)(4, 8, 12, 9)(5, 13, 6, 7)(10, 11)(14, 15)
orbits: { 1, 2 }, { 3 }, { 4, 6, 9, 8, 7, 13, 12, 5 }, { 10, 14, 11, 15 }

code no       5:
================
1 1 1 1 1 1 0 0 0 0 0 1 0 0 0
1 1 1 0 0 0 1 1 1 0 0 0 1 0 0
1 0 0 1 1 0 1 1 0 1 0 0 0 1 0
0 1 0 1 0 1 1 0 1 1 1 0 0 0 1
the automorphism group has order 192
and is strongly generated by the following 6 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 1 0 1 0 1 1 0 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
1 0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
1 0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(11, 15), 
(4, 5)(6, 12)(7, 8)(9, 13), 
(4, 12)(5, 6)(7, 13)(8, 9), 
(4, 9)(5, 13)(6, 7)(8, 12), 
(2, 3)(4, 9)(5, 13)(6, 8)(7, 12)(10, 14), 
(2, 13, 12)(3, 9, 6)(4, 7, 14)(5, 8, 10)
orbits: { 1 }, { 2, 3, 12, 6, 4, 8, 7, 13, 5, 9, 14, 10 }, { 11, 15 }