the 4 isometry classes of irreducible [17,5,8]_2 codes are:

code no       1:
================
1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0
1 1 1 1 0 0 0 1 1 1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 1 1 0 1 0 0 0 1 0 0
1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 0
0 0 1 1 1 1 0 1 1 0 0 1 0 0 0 0 1
the automorphism group has order 2688
and is strongly generated by the following 7 elements:
(
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 
0 0 1 1 1 1 0 1 1 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 
1 1 0 0 1 1 0 1 1 0 1 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(12, 17), 
(5, 9)(6, 8)(7, 14)(10, 13), 
(5, 8)(6, 9)(7, 10)(13, 14), 
(5, 14)(6, 10)(7, 9)(8, 13), 
(3, 5, 13)(4, 6, 7)(8, 15, 14)(9, 11, 10), 
(3, 13, 14)(4, 7, 10)(5, 15, 8)(6, 11, 9), 
(1, 15, 9, 4, 10, 5, 13)(2, 11, 8, 3, 14, 6, 7)
orbits: { 1, 13, 10, 14, 8, 5, 3, 7, 6, 11, 4, 15, 9, 2 }, { 12, 17 }, { 16 }

code no       2:
================
1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0
1 1 1 1 0 0 0 1 1 1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 1 1 0 1 0 0 0 1 0 0
1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 0
0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 1
the automorphism group has order 1440
and is strongly generated by the following 7 elements:
(
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 
0 1 1 0 1 0 1 1 1 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 
1 1 0 0 1 1 0 1 1 0 1 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 
1 0 1 0 1 0 1 1 0 1 1 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 1 0 1 0 1 1 0 1 1 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 
1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 
1 1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 1 0 0 1 1 0 1 1 0 1 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 
1 1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(12, 17), 
(5, 13)(6, 7)(8, 14)(9, 10), 
(3, 5, 13)(4, 6, 7)(8, 15, 14)(9, 11, 10), 
(2, 16)(3, 15)(5, 8)(6, 7)(9, 10)(13, 14), 
(2, 15)(3, 16)(6, 9)(7, 10), 
(1, 8, 11, 9, 4, 16)(2, 13, 14, 10, 6, 3)(5, 15, 7), 
(1, 16, 4, 15)(2, 3)(5, 6, 9, 14)(7, 10, 8, 13)
orbits: { 1, 16, 15, 2, 3, 4, 8, 5, 13, 6, 7, 9, 14, 10, 11 }, { 12, 17 }

code no       3:
================
1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0
1 1 1 1 0 0 0 1 1 1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 1 1 0 1 0 0 0 1 0 0
1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 0
1 0 0 1 0 1 1 0 1 1 1 1 0 0 0 0 1
the automorphism group has order 40320
and is strongly generated by the following 8 elements:
(
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 
1 0 0 1 0 1 1 0 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 0 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 1 0 1 0 1 1 0 1 1 0 
0 0 0 0 0 0 0 0 0 1 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(12, 17), 
(5, 10)(6, 14)(7, 8)(9, 13), 
(5, 6)(7, 13)(8, 9)(10, 14), 
(5, 8)(6, 9)(7, 10)(13, 14), 
(3, 4)(5, 6)(10, 14)(11, 15), 
(3, 14, 8)(4, 10, 9)(5, 13, 15)(6, 7, 11), 
(2, 3)(5, 7, 13, 6)(8, 10, 14, 9)(15, 16), 
(1, 15, 13, 14, 16)(2, 3, 6, 4, 10)(5, 11, 8, 9, 7)
orbits: { 1, 16, 15, 14, 11, 13, 6, 10, 3, 7, 5, 9, 4, 8, 2 }, { 12, 17 }

code no       4:
================
1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0
1 1 1 1 0 0 0 1 1 1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 1 1 0 1 0 0 0 1 0 0
0 0 1 1 1 1 0 1 1 0 0 1 0 0 0 1 0
1 0 1 0 1 0 1 1 0 1 1 1 0 0 0 0 1
the automorphism group has order 21504
and is strongly generated by the following 10 elements:
(
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 
0 0 1 1 1 1 0 1 1 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 0 
0 0 1 1 1 1 0 1 1 0 0 1 
0 0 0 0 0 0 0 0 1 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 
0 0 1 1 1 1 0 1 1 0 0 1 
0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 
0 0 1 1 1 1 0 1 1 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 
0 0 1 1 1 1 0 1 1 0 0 1 
0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 
1 1 0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 
1 1 0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 1 1 1 1 0 1 1 0 0 1 
, 
0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 
, 
0 0 0 0 0 0 0 0 0 0 0 1 
0 0 1 1 1 1 0 1 1 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(8, 9)(10, 14)(11, 15)(12, 16), 
(8, 15)(9, 11)(10, 16)(12, 14), 
(8, 12)(9, 16)(10, 11)(14, 15), 
(5, 10, 6, 14)(7, 8, 13, 9)(11, 15)(12, 16), 
(5, 10, 12)(6, 14, 16)(7, 8, 11)(9, 15, 13), 
(3, 10)(4, 14)(5, 11)(6, 15), 
(3, 13, 15, 8)(4, 7, 11, 9)(5, 14)(6, 10), 
(3, 13, 15, 9)(4, 7, 11, 8)(5, 14, 6, 10)(12, 16), 
(1, 8, 5)(2, 9, 6)(3, 10, 7)(4, 14, 13), 
(1, 8, 3, 16, 2, 9, 4, 12)(5, 15, 7, 10, 6, 11, 13, 14)
orbits: { 1, 5, 12, 14, 11, 10, 8, 16, 4, 15, 6, 13, 9, 7, 3, 2 }, { 17 }