the 2 isometry classes of irreducible [18,7,7]_2 codes are:

code no       1:
================
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0
1 1 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0
1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0
0 1 0 1 0 1 1 0 1 1 0 0 0 0 0 1 0 0
0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 1 0
0 0 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 1
the automorphism group has order 360
and is strongly generated by the following 4 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 1 0 1 1 0 1 1 1 0 
0 0 1 1 0 1 1 1 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 1 1 0 1 1 1 0 
0 1 0 1 0 1 1 0 1 1 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
1 0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
0 1 0 1 0 1 1 0 1 1 0 
1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
1 0 0 1 1 0 1 1 0 1 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 1 0 1 1 0 1 1 1 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(4, 5)(6, 13)(7, 9)(8, 14)(10, 17)(11, 18)(15, 16), 
(2, 5)(3, 4)(7, 8)(9, 10)(14, 15)(16, 17), 
(2, 7, 4, 17)(3, 8, 5, 16)(6, 13)(9, 10, 14, 15)(11, 12), 
(1, 8, 3, 5, 16)(2, 10, 15, 4, 13)(6, 14, 17, 7, 9)
orbits: { 1, 16, 15, 17, 5, 14, 10, 4, 2, 8, 3, 6, 9, 7, 13 }, { 11, 18, 12 }

code no       2:
================
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0
1 1 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0
1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0
0 1 0 1 0 1 1 0 1 1 0 0 0 0 0 1 0 0
0 0 1 1 0 1 1 1 0 0 1 0 0 0 0 0 1 0
1 1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 1
the automorphism group has order 1920
and is strongly generated by the following 10 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 1 1 0 1 1 1 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
1 1 0 0 0 1 0 1 0 1 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 1 1 0 1 1 1 0 0 1 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 0 0 0 
1 1 0 0 0 1 0 1 0 1 1 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 1 0 1 0 1 1 0 1 1 0 
1 0 0 1 1 0 1 1 0 1 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 1 0 1 1 1 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
1 1 1 1 1 1 0 0 0 0 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 
0 0 1 1 0 1 1 1 0 0 1 
1 1 1 1 1 1 1 1 1 1 1 
1 0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 1 0 
0 1 0 1 0 1 1 0 1 1 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 0 1 1 1 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 0 1 1 1 0 0 
0 1 0 1 0 1 1 0 1 1 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
1 1 0 0 0 1 0 1 0 1 1 
0 0 1 0 0 0 0 0 0 0 0 
1 0 0 1 1 0 1 1 0 1 0 
1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 1 0 1 0 1 1 0 1 1 0 
0 0 0 0 0 0 0 0 0 1 0 
0 1 0 0 0 0 0 0 0 0 0 
, 
0 0 1 1 0 1 1 1 0 0 1 
1 1 1 0 0 0 1 1 1 0 0 
0 0 1 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 0 
1 0 0 1 1 0 1 1 0 1 0 
0 0 0 1 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 0 
, 
1 1 1 1 1 1 0 0 0 0 0 
1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
1 0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 1 0 1 0 1 1 0 1 1 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
1 1 0 0 0 1 0 1 0 1 1 
1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 1 0 1 0 1 1 0 1 1 0 
0 0 0 0 0 1 0 0 0 0 0 
1 0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 1 0 0 0 0 0 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(4, 13)(5, 6)(7, 14)(8, 9)(11, 17)(12, 18), 
(4, 14)(5, 9)(6, 8)(7, 13)(11, 18)(12, 17), 
(3, 10)(4, 18, 7, 17)(5, 6, 8, 9)(11, 14, 12, 13)(15, 16), 
(2, 12)(4, 8)(6, 16)(7, 15)(9, 17)(11, 13), 
(2, 4)(6, 13)(7, 17)(8, 12)(9, 15)(11, 16), 
(2, 7, 4, 17)(3, 10)(5, 14)(6, 11, 13, 16)(8, 15, 12, 9), 
(2, 11, 6, 8, 18)(4, 12, 17, 14, 15)(5, 16, 9, 7, 13), 
(1, 9, 6, 16, 17)(2, 15, 7, 12, 14)(4, 8, 11, 5, 13), 
(1, 13)(2, 14)(3, 10)(4, 15)(5, 9)(7, 16)(11, 12), 
(1, 2, 11, 8, 18)(4, 12, 17, 13, 9)(5, 15, 7, 14, 16)
orbits: { 1, 17, 13, 18, 11, 12, 7, 9, 4, 16, 6, 5, 8, 2, 14, 15 }, { 3, 10 }