the 1 isometry classes of irreducible [19,7,8]_2 codes are:

code no       1:
================
1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0
1 1 0 0 1 1 0 1 1 0 1 0 0 0 1 0 0 0 0
1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 0 0 0
1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 1 0 0
0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 0 1 0
1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 1
the automorphism group has order 5760
and is strongly generated by the following 7 elements:
(
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 
1 1 0 0 1 1 0 1 1 0 1 0 
1 0 1 0 1 0 1 1 0 1 1 0 
0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
1 1 0 0 0 1 1 1 0 1 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 
1 0 0 1 0 1 1 0 1 1 1 0 
1 1 0 0 1 1 0 1 1 0 1 0 
1 1 1 1 0 0 0 1 1 1 0 0 
0 1 1 0 1 0 1 1 1 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 
1 0 1 0 1 0 1 1 0 1 1 0 
0 0 0 0 0 0 0 0 0 0 1 0 
1 1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 
1 1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 
, 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 
1 1 0 0 1 1 0 1 1 0 1 0 
1 0 0 1 0 1 1 0 1 1 1 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(5, 7)(6, 13)(8, 9)(10, 14)(11, 17)(15, 16), 
(5, 13)(6, 7)(8, 10)(9, 14)(11, 15)(16, 17), 
(5, 8, 11)(6, 9, 15)(7, 10, 16)(12, 18, 19)(13, 14, 17), 
(3, 4)(5, 6)(8, 16)(9, 17)(10, 15)(11, 14)(12, 18), 
(2, 3, 4)(5, 9, 15)(6, 14, 16)(7, 10, 11)(8, 17, 13), 
(2, 13, 7)(3, 15, 17)(4, 10, 9)(5, 11, 8)(6, 14, 16), 
(1, 15, 9)(2, 17, 10)(3, 16, 8)(4, 11, 14)(6, 7, 13)
orbits: { 1, 9, 8, 14, 6, 17, 5, 10, 15, 16, 13, 11, 7, 2, 4, 3 }, { 12, 19, 18 }