the 1 isometry classes of irreducible [19,8,7]_2 codes are:

code no       1:
================
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0
1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0
0 1 0 1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 0
0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0
0 0 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 1 0
1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 1
the automorphism group has order 1152
and is strongly generated by the following 8 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 1 0 1 0 1 1 0 1 1 0 
0 0 1 0 1 1 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
1 0 0 0 1 1 1 0 1 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 1 0 1 0 1 1 0 1 1 0 
0 0 1 0 1 1 0 1 1 1 0 
1 1 1 1 1 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 0 0 1 1 0 1 1 0 1 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
1 0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 1 0 1 0 1 1 0 1 1 0 
0 0 0 0 0 0 1 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 1 0 1 0 1 1 0 1 1 0 
1 0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 
0 1 0 1 0 1 1 0 1 1 0 
0 0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 1 1 0 1 1 1 0 0 1 
1 0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
1 0 0 0 1 1 1 0 1 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
0 0 0 0 0 0 1 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 
0 0 1 0 1 1 0 1 1 1 0 
0 0 0 0 0 0 0 0 1 0 0 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 0 1 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 1 0 1 1 0 1 1 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 1 1 1 0 1 0 1 
1 1 1 0 0 0 1 1 1 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 1 0 1 0 1 1 0 1 1 0 
1 1 1 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 1 1 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(4, 9, 16)(5, 14, 17)(6, 7, 10)(8, 15, 13)(11, 18, 19), 
(3, 12)(4, 9)(6, 10)(8, 11)(13, 18)(14, 17)(15, 19), 
(2, 8)(3, 7)(4, 16)(5, 17)(6, 13)(10, 15)(11, 12), 
(2, 7, 10)(3, 8, 15)(4, 16, 9)(5, 17, 14)(11, 18, 12), 
(2, 13)(3, 6)(7, 8)(9, 16)(10, 15)(12, 19)(14, 17), 
(2, 19, 10, 11)(3, 13, 15, 8)(4, 16)(6, 18, 7, 12)(14, 17), 
(1, 8, 7)(2, 5, 13)(3, 10, 17)(4, 16, 9)(6, 14, 15), 
(1, 6, 13, 19)(2, 3, 11, 14)(4, 16)(5, 10, 8, 12)(7, 15, 18, 17)
orbits: { 1, 7, 19, 6, 3, 2, 8, 18, 17, 15, 12, 13, 10, 11, 14, 5 }, { 4, 16, 9 }