the 1 isometry classes of irreducible [21,9,8]_2 codes are:

code no       1:
================
1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 1 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 0 0 0 0 0
1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0
0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0
1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 1 0 0
0 1 0 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0
0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1
the automorphism group has order 120960
and is strongly generated by the following 10 elements:
(
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
0 1 1 0 1 0 1 1 1 0 0 1 
0 1 0 1 1 1 0 0 1 1 0 1 
1 1 0 0 0 1 1 1 0 1 0 1 
0 0 0 0 0 0 0 0 0 1 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 
1 0 1 0 1 0 1 1 0 1 1 0 
1 1 0 0 1 1 0 1 1 0 1 0 
1 1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 
1 0 1 0 1 0 1 1 0 1 1 0 
0 0 0 0 0 0 0 0 0 0 1 0 
0 1 1 0 1 0 1 1 1 0 0 1 
1 1 0 0 0 1 1 1 0 1 0 1 
0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 
1 0 0 1 0 1 1 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 1 0 0 0 0 0 0 0 
0 1 0 1 1 1 0 0 1 1 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 0 0 1 1 
1 1 0 0 1 1 0 1 1 0 1 0 
1 1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
0 1 1 0 1 0 1 1 1 0 0 1 
1 0 0 1 0 1 1 0 1 1 1 0 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 
0 1 0 1 1 1 0 0 1 1 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 
1 0 0 1 0 1 1 0 1 1 1 0 
1 1 0 0 1 1 0 1 1 0 1 0 
1 1 1 1 0 0 0 1 1 1 0 0 
0 1 1 0 1 0 1 1 1 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 1 0 
1 0 1 0 1 0 1 1 0 1 1 0 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 
0 1 0 1 1 1 0 0 1 1 0 1 
0 0 0 1 1 1 1 1 0 0 1 1 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
0 1 1 0 1 0 1 1 1 0 0 1 
1 0 0 1 0 1 1 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 1 0 
0 1 0 0 0 0 0 0 0 0 0 0 
, 
0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 
1 1 0 0 0 1 1 1 0 1 0 1 
, 
0 0 0 1 1 1 1 1 0 0 1 1 
0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
0 1 1 0 1 0 1 1 1 0 0 1 
1 0 0 1 0 1 1 0 1 1 1 0 
0 1 0 1 1 1 0 0 1 1 0 1 
1 0 0 0 0 0 0 0 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(6, 7, 13)(8, 15, 18)(9, 16, 20)(10, 11, 19)(12, 14, 17), 
(5, 14, 17)(6, 10, 16)(7, 9, 15)(8, 11, 13)(18, 20, 19), 
(5, 15)(6, 16)(7, 11)(8, 18)(9, 19)(10, 12)(13, 17)(14, 20), 
(5, 11, 10)(6, 15, 14)(7, 16, 8)(9, 13, 17)(12, 18, 20), 
(4, 21)(5, 18, 8, 15)(6, 7, 10, 14)(9, 19, 13, 17)(11, 16, 20, 12), 
(3, 4)(5, 6)(8, 16)(9, 17)(10, 15)(11, 14)(12, 18), 
(2, 3, 4)(5, 14, 17)(6, 9, 11)(7, 8, 16)(10, 15, 13), 
(2, 12, 20, 4, 14, 13)(3, 17, 10, 21, 5, 15)(6, 18, 9)(7, 8)(16, 19), 
(1, 9, 13, 4, 10, 5)(2, 8, 7, 3, 14, 6)(11, 17)(12, 18, 19)(15, 16), 
(1, 12, 6, 3, 5, 2, 17, 10, 8, 19, 18, 9, 7, 21)(4, 14, 16, 20, 11, 15, 13)
orbits: { 1, 5, 21, 17, 15, 10, 6, 3, 4, 7, 14, 13, 9, 11, 2, 8, 16, 19, 12, 20, 18 }