the 128 isometry classes of irreducible [22,12,6]_2 codes are:

code no       1:
================
1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 887040
and is strongly generated by the following 11 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 1 1 1 0 1 0 1 
1 0 1 1 0 0 1 1 0 1 
0 0 0 0 0 0 0 0 0 1 
0 1 1 0 0 0 0 1 1 1 
0 0 0 0 0 0 0 1 0 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 
0 1 1 0 0 0 0 1 1 1 
1 0 0 0 1 0 1 0 1 1 
1 0 1 1 0 0 1 1 0 1 
0 1 0 1 1 0 1 1 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
1 1 0 1 0 1 0 0 1 1 
1 0 0 0 1 0 1 0 1 1 
0 1 1 0 0 0 0 1 1 1 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 1 1 0 1 1 0 1 0 
0 1 1 0 1 1 1 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 1 0 1 1 0 1 1 1 0 
1 0 1 0 1 1 0 1 1 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
1 1 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
1 0 1 1 0 0 1 1 0 1 
1 0 1 0 1 1 0 1 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 0 1 0 1 
1 0 1 1 0 0 1 1 0 1 
0 0 0 0 0 0 0 0 0 1 
1 0 1 0 1 1 0 1 1 0 
0 0 0 0 0 0 0 0 1 0 
0 0 1 1 0 1 1 0 1 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 0 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 0 0 0 1 0 1 0 1 1 
0 0 0 1 0 0 0 0 0 0 
1 0 1 1 0 0 1 1 0 1 
0 1 1 0 1 1 1 0 0 1 
1 1 0 1 0 1 0 0 1 1 
0 0 0 0 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
1 1 0 0 0 1 1 1 0 0 
, 
0 1 0 1 1 0 1 1 1 0 
1 0 1 0 1 1 0 1 1 0 
1 0 1 1 0 0 1 1 0 1 
1 1 1 1 1 1 1 1 1 1 
0 1 1 0 1 1 1 0 0 1 
0 0 1 1 0 1 1 0 1 0 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
1 1 0 0 0 1 1 1 0 0 
, 
0 1 1 0 0 0 0 1 1 1 
1 0 1 1 0 0 1 1 0 1 
1 1 0 1 0 1 0 0 1 1 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
1 0 0 0 1 0 1 0 1 1 
0 1 1 0 1 1 1 0 0 1 
0 1 0 1 1 0 1 1 1 0 
1 0 1 0 1 1 0 1 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(6, 18)(7, 19)(8, 10)(9, 22)(11, 14)(13, 17)(15, 20)(16, 21), 
(6, 11)(7, 22)(8, 21)(9, 19)(10, 16)(13, 20)(14, 18)(15, 17), 
(6, 20)(7, 21)(8, 22)(9, 10)(11, 13)(14, 17)(15, 18)(16, 19), 
(6, 7)(8, 13)(9, 14)(10, 17)(11, 22)(15, 16)(18, 19)(20, 21), 
(5, 12)(6, 16)(7, 15)(8, 9)(13, 14)(18, 19)(20, 21), 
(4, 12)(6, 13)(9, 10)(11, 20)(14, 18)(15, 17)(16, 19), 
(3, 13)(4, 7)(5, 6)(8, 12)(9, 19)(10, 15)(14, 17)(16, 18), 
(3, 18)(4, 19)(5, 10)(6, 15)(7, 9)(8, 14)(12, 17)(13, 16), 
(2, 17, 6)(3, 9, 21)(5, 8, 19)(7, 18, 20)(10, 14, 13)(11, 15, 12), 
(1, 7, 14, 6, 16)(2, 8, 17, 5, 15)(3, 18, 11, 4, 19)(9, 13, 10, 20, 12), 
(1, 15, 10, 5, 16, 9, 6, 4, 11, 22)(2, 17, 8, 14, 13, 18, 21, 7, 12, 19)(3, 20)
orbits: { 1, 16, 22, 21, 10, 19, 15, 6, 18, 13, 5, 9, 7, 8, 11, 20, 17, 4, 12, 14, 3, 2 }

code no       2:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 4
and is strongly generated by the following 2 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
1 0 1 1 0 1 0 0 1 0 
1 1 0 1 0 1 0 1 0 0 
0 1 1 1 0 1 0 0 0 1 
, 
1 1 0 1 1 0 1 1 1 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 1 1 0 1 0 1 0 1 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 1 1 1 0 1 1 1 1 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(2, 3)(4, 6)(5, 12)(7, 11)(8, 15)(9, 13)(10, 20)(14, 16)(17, 19), 
(1, 18)(4, 6)(5, 16)(7, 9)(8, 19)(11, 13)(12, 14)(15, 17)(21, 22)
orbits: { 1, 18 }, { 2, 3 }, { 4, 6 }, { 5, 12, 16, 14 }, { 7, 11, 9, 13 }, { 8, 15, 19, 17 }, { 10, 20 }, { 21, 22 }

code no       3:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
1 1 1 1 1 0 0 0 0 0 
1 1 0 1 0 1 0 1 0 0 
0 0 0 0 0 1 0 0 0 0 
1 0 1 0 1 0 1 1 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(1, 11)(2, 13)(3, 6)(4, 14)(5, 7)(8, 12)(15, 19)(16, 18)(20, 21)
orbits: { 1, 11 }, { 2, 13 }, { 3, 6 }, { 4, 14 }, { 5, 7 }, { 8, 12 }, { 9 }, { 10 }, { 15, 19 }, { 16, 18 }, { 17 }, { 20, 21 }, { 22 }

code no       4:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 24
and is strongly generated by the following 4 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
1 0 1 1 0 1 0 0 1 0 
1 1 0 1 0 1 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 1 0 1 0 1 1 0 0 
1 1 1 0 1 1 0 1 1 0 
1 0 1 1 0 1 0 0 1 0 
0 0 0 0 0 0 1 0 0 0 
1 1 1 1 1 0 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 1 1 1 0 1 1 1 1 0 
1 1 0 1 1 0 1 1 1 0 
1 1 0 0 1 0 0 1 0 1 
, 
1 1 0 1 1 0 1 1 1 0 
0 0 1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 0 1 0 1 0 1 1 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 0 1 0 1 0 1 0 0 
1 1 1 0 1 1 0 1 1 0 
1 1 1 1 1 0 0 0 0 0 
0 1 1 1 0 1 0 0 0 1 
, 
1 1 1 0 0 1 1 0 0 0 
1 1 1 0 1 1 0 1 1 0 
1 0 1 1 0 1 0 0 1 0 
1 0 1 0 1 0 1 1 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 1 1 0 1 0 1 0 1 0 
0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
1 1 1 1 0 0 1 0 1 1 
)
acting on the columns of the generator matrix as follows (in order):
(2, 3)(4, 6)(5, 12)(7, 11)(8, 15)(9, 13)(14, 16)(17, 19)(21, 22), 
(1, 14)(2, 17)(3, 15)(4, 7)(5, 11)(6, 12)(8, 19)(9, 18)(10, 21), 
(1, 18)(2, 3)(5, 14)(7, 13)(8, 17)(9, 11)(10, 20)(12, 16)(15, 19), 
(1, 13, 12)(2, 19, 17)(3, 8, 15)(4, 5, 14)(6, 11, 9)(7, 18, 16)(10, 20, 22)
orbits: { 1, 14, 18, 12, 16, 5, 9, 7, 6, 13, 11, 4 }, { 2, 3, 17, 15, 19, 8 }, { 10, 21, 20, 22 }

code no       5:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no       6:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no       7:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no       8:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no       9:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      10:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      11:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      12:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      13:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      14:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      15:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      16:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      17:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      18:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
0 0 0 0 0 0 0 0 1 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
1 1 0 1 1 0 1 1 1 0 
1 0 1 1 0 1 0 0 1 0 
1 1 1 0 0 1 1 0 0 0 
1 1 0 1 0 1 0 1 0 0 
1 0 0 0 0 0 0 0 0 0 
1 0 1 1 0 1 1 1 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(1, 9)(3, 4)(5, 18)(6, 15)(7, 12)(8, 13)(10, 21)(11, 14)(16, 17)(19, 22)
orbits: { 1, 9 }, { 2 }, { 3, 4 }, { 5, 18 }, { 6, 15 }, { 7, 12 }, { 8, 13 }, { 10, 21 }, { 11, 14 }, { 16, 17 }, { 19, 22 }, { 20 }

code no      19:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      20:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      21:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      22:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      23:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      24:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
1 0 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      25:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      26:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      27:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      28:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      29:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      30:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      31:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
1 1 0 1 0 1 0 1 0 0 
0 1 1 0 1 0 1 0 1 0 
0 0 0 0 0 0 0 1 0 0 
1 0 1 1 0 1 0 0 1 0 
0 0 0 0 1 0 0 0 0 0 
1 0 1 0 1 0 1 1 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
1 1 0 1 1 0 1 1 1 0 
0 1 1 1 0 1 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(1, 13)(2, 16)(3, 8)(4, 15)(6, 14)(7, 11)(9, 18)(10, 19)(12, 17)(21, 22)
orbits: { 1, 13 }, { 2, 16 }, { 3, 8 }, { 4, 15 }, { 5 }, { 6, 14 }, { 7, 11 }, { 9, 18 }, { 10, 19 }, { 12, 17 }, { 20 }, { 21, 22 }

code no      32:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      33:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      34:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      35:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      36:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      37:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      38:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
1 0 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 8
and is strongly generated by the following 3 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 1 0 1 0 1 0 1 0 
0 0 0 0 0 1 0 0 0 0 
1 0 1 1 0 1 0 0 1 0 
0 1 0 1 1 0 1 0 0 1 
0 0 1 0 0 0 0 0 0 0 
0 1 1 1 0 1 0 0 0 1 
1 0 1 0 1 0 1 1 0 0 
0 0 0 0 0 0 0 0 1 0 
1 1 1 1 1 0 0 0 0 0 
, 
1 1 0 1 0 1 0 1 0 0 
0 1 0 0 0 0 0 0 0 0 
1 0 1 0 1 0 1 1 0 0 
0 0 0 1 0 0 0 0 0 0 
0 1 0 1 1 0 1 0 0 1 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 1 0 0 0 0 
1 1 0 1 1 0 1 1 1 0 
0 0 0 0 0 0 1 0 0 0 
, 
0 1 1 0 1 0 1 0 1 0 
1 1 0 1 0 1 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 
1 1 0 1 1 0 1 1 1 0 
0 1 0 1 1 0 1 0 0 1 
0 0 0 0 0 1 0 0 0 0 
1 0 1 1 1 0 1 0 1 1 
0 0 1 0 0 0 0 0 0 0 
1 0 1 1 0 1 0 0 1 0 
1 1 1 0 0 1 1 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(2, 16)(3, 6)(4, 15)(5, 20)(7, 19)(8, 14)(10, 11)(12, 22)(17, 21), 
(1, 13)(3, 14)(5, 20)(6, 8)(7, 10)(9, 18)(11, 19)(12, 21)(17, 22), 
(1, 16)(2, 13)(3, 8)(4, 18)(5, 20)(7, 22)(9, 15)(10, 12)(11, 21)(17, 19)
orbits: { 1, 13, 16, 2 }, { 3, 6, 14, 8 }, { 4, 15, 18, 9 }, { 5, 20 }, { 7, 19, 10, 22, 11, 17, 12, 21 }

code no      39:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      40:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 8
and is strongly generated by the following 2 elements:
(
1 0 1 0 1 0 1 1 0 0 
0 0 1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
0 0 0 1 0 0 0 0 0 0 
0 1 1 1 1 0 1 1 0 1 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
, 
0 0 0 0 0 0 0 0 1 0 
1 1 1 0 1 1 0 1 1 0 
1 0 1 1 0 1 0 0 1 0 
1 1 1 0 0 1 1 0 0 0 
0 1 1 0 1 0 1 0 1 0 
0 0 0 0 0 0 1 0 0 0 
1 1 0 1 1 0 1 1 1 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 1 0 0 0 0 0 0 
0 1 1 1 0 1 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(1, 14)(2, 3)(4, 7)(5, 10)(6, 9)(8, 21)(11, 20)(12, 18)(13, 22)(15, 17)(16, 19), 
(1, 12, 4, 9)(2, 15, 3, 17)(5, 13, 11, 16)(6, 14, 18, 7)(10, 22, 20, 19)
orbits: { 1, 14, 9, 6, 4, 7, 12, 18 }, { 2, 3, 17, 15 }, { 5, 10, 16, 19, 11, 20, 13, 22 }, { 8, 21 }

code no      41:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      42:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
1 1 1 0 1 1 0 1 1 0 
0 0 0 0 0 0 0 1 0 0 
1 1 0 1 0 1 0 1 0 0 
0 1 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 1 0 0 
1 1 1 0 0 1 1 0 0 0 
1 1 0 1 1 0 1 1 1 0 
0 1 0 0 0 0 0 0 0 0 
1 0 1 1 0 1 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(1, 17)(2, 8)(3, 13)(4, 16)(5, 14)(6, 12)(7, 18)(9, 15)(19, 21)(20, 22)
orbits: { 1, 17 }, { 2, 8 }, { 3, 13 }, { 4, 16 }, { 5, 14 }, { 6, 12 }, { 7, 18 }, { 9, 15 }, { 10 }, { 11 }, { 19, 21 }, { 20, 22 }

code no      43:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      44:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      45:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      46:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      47:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 1 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
1 1 0 0 1 0 1 0 0 1 
0 1 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 1 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(2, 3)(4, 12)(5, 7)(6, 11)(8, 19)(9, 16)(10, 14)(13, 18)(17, 21)
orbits: { 1 }, { 2, 3 }, { 4, 12 }, { 5, 7 }, { 6, 11 }, { 8, 19 }, { 9, 16 }, { 10, 14 }, { 13, 18 }, { 15 }, { 17, 21 }, { 20 }, { 22 }

code no      48:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      49:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      50:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      51:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      52:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      53:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      54:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      55:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      56:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
0 0 1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 1 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
1 0 1 0 1 0 1 1 0 0 
1 1 0 0 1 0 1 0 0 1 
0 1 1 0 1 0 1 0 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(1, 3)(4, 12)(5, 7)(6, 11)(8, 14)(9, 19)(10, 16)(15, 18)(17, 20)
orbits: { 1, 3 }, { 2 }, { 4, 12 }, { 5, 7 }, { 6, 11 }, { 8, 14 }, { 9, 19 }, { 10, 16 }, { 13 }, { 15, 18 }, { 17, 20 }, { 21 }, { 22 }

code no      57:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      58:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      59:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      60:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      61:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      62:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
1 0 1 0 1 0 1 1 0 0 
0 0 0 0 0 0 1 0 0 0 
0 1 1 0 1 0 1 0 1 0 
1 0 1 1 0 1 1 1 0 1 
0 0 0 0 0 0 0 0 1 0 
1 1 0 0 1 0 1 0 0 1 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 0 0 
1 1 1 0 1 1 0 1 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(1, 14)(2, 7)(3, 16)(4, 20)(5, 9)(6, 19)(10, 17)(11, 18)(12, 21)
orbits: { 1, 14 }, { 2, 7 }, { 3, 16 }, { 4, 20 }, { 5, 9 }, { 6, 19 }, { 8 }, { 10, 17 }, { 11, 18 }, { 12, 21 }, { 13 }, { 15 }, { 22 }

code no      63:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
1 0 1 0 1 0 1 1 0 0 
0 0 0 0 0 0 1 0 0 0 
0 1 1 0 1 0 1 0 1 0 
1 0 1 1 0 1 1 1 0 1 
0 0 0 0 0 0 0 0 1 0 
1 1 0 0 1 0 1 0 0 1 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 0 0 
1 1 1 0 1 1 0 1 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(1, 14)(2, 7)(3, 16)(4, 20)(5, 9)(6, 19)(10, 17)(11, 18)(12, 21)
orbits: { 1, 14 }, { 2, 7 }, { 3, 16 }, { 4, 20 }, { 5, 9 }, { 6, 19 }, { 8 }, { 10, 17 }, { 11, 18 }, { 12, 21 }, { 13 }, { 15 }, { 22 }

code no      64:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      65:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      66:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 10
and is strongly generated by the following 2 elements:
(
1 0 1 1 0 1 1 1 0 1 
1 1 1 0 1 1 0 1 1 0 
0 0 1 0 0 0 0 0 0 0 
1 0 1 1 0 1 0 0 1 0 
1 1 0 0 1 0 1 0 0 1 
0 0 0 0 0 0 0 0 0 1 
0 0 0 1 0 0 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 1 0 1 0 1 1 1 1 1 
0 0 0 0 0 0 0 0 1 0 
, 
0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
1 1 0 1 0 1 0 1 0 0 
0 1 1 1 0 1 0 0 0 1 
1 0 1 1 0 1 0 0 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(1, 19, 5, 13, 20)(2, 16, 12, 8, 17)(4, 7, 21, 18, 15)(6, 11, 22, 9, 10), 
(1, 2)(4, 6)(5, 12)(7, 11)(8, 13)(9, 18)(10, 15)(16, 19)(17, 20)(21, 22)
orbits: { 1, 20, 2, 13, 17, 5, 8, 19, 12, 16 }, { 3 }, { 4, 15, 6, 18, 10, 21, 9, 7, 22, 11 }, { 14 }

code no      67:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      68:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      69:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      70:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      71:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      72:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      73:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      74:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      75:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      76:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
0 0 1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(1, 3)(4, 7)(5, 6)(8, 9)(11, 12)(13, 16)(14, 15)(18, 19)(20, 22)
orbits: { 1, 3 }, { 2 }, { 4, 7 }, { 5, 6 }, { 8, 9 }, { 10 }, { 11, 12 }, { 13, 16 }, { 14, 15 }, { 17 }, { 18, 19 }, { 20, 22 }, { 21 }

code no      77:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      78:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      79:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      80:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
0 0 1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(1, 3)(4, 7)(5, 6)(8, 9)(11, 12)(13, 16)(14, 15)(18, 19)(20, 21)
orbits: { 1, 3 }, { 2 }, { 4, 7 }, { 5, 6 }, { 8, 9 }, { 10 }, { 11, 12 }, { 13, 16 }, { 14, 15 }, { 17 }, { 18, 19 }, { 20, 21 }, { 22 }

code no      81:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      82:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      83:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      84:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 1 1 0 1 0 0 1 
0 0 0 0 0 0 0 0 0 1 
1 0 1 0 1 0 1 1 0 0 
1 1 1 1 1 0 1 1 1 1 
0 0 0 0 0 1 0 0 0 0 
0 1 1 0 1 0 1 0 1 0 
0 0 0 0 0 0 0 1 0 0 
1 1 0 0 1 0 0 1 0 1 
0 0 1 0 0 0 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(2, 19)(3, 10)(4, 14)(5, 22)(7, 16)(9, 20)(11, 21)(12, 15)(13, 18)
orbits: { 1 }, { 2, 19 }, { 3, 10 }, { 4, 14 }, { 5, 22 }, { 6 }, { 7, 16 }, { 8 }, { 9, 20 }, { 11, 21 }, { 12, 15 }, { 13, 18 }, { 17 }

code no      85:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      86:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      87:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
0 0 0 0 1 0 0 0 0 0 
0 1 0 1 1 0 1 0 0 1 
0 0 0 0 0 0 1 0 0 0 
1 0 1 1 1 0 1 0 1 1 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(1, 5)(2, 19)(3, 7)(4, 21)(9, 10)(11, 16)(12, 18)(13, 17)(20, 22)
orbits: { 1, 5 }, { 2, 19 }, { 3, 7 }, { 4, 21 }, { 6 }, { 8 }, { 9, 10 }, { 11, 16 }, { 12, 18 }, { 13, 17 }, { 14 }, { 15 }, { 20, 22 }

code no      88:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      89:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      90:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      91:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      92:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      93:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      94:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 4
and is strongly generated by the following 1 elements:
(
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 1 1 1 0 1 0 1 
0 1 1 0 1 0 1 0 1 0 
0 1 1 1 0 1 0 0 0 1 
0 0 0 0 0 1 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
1 0 0 0 1 0 1 0 1 1 
)
acting on the columns of the generator matrix as follows (in order):
(1, 8, 2, 7)(3, 16, 4, 20)(5, 9, 11, 18)(10, 22, 15, 21)(12, 17, 13, 19)
orbits: { 1, 7, 2, 8 }, { 3, 20, 4, 16 }, { 5, 18, 11, 9 }, { 6 }, { 10, 21, 15, 22 }, { 12, 19, 13, 17 }, { 14 }

code no      95:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      96:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      97:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 1 1 1 0 1 0 0 0 1 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 0 1 0 1 0 1 1 0 0 
0 1 1 0 1 0 1 0 1 0 
0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(1, 2)(3, 12)(4, 18)(6, 7)(8, 14)(9, 16)(11, 19)(13, 20)(15, 21)
orbits: { 1, 2 }, { 3, 12 }, { 4, 18 }, { 5 }, { 6, 7 }, { 8, 14 }, { 9, 16 }, { 10 }, { 11, 19 }, { 13, 20 }, { 15, 21 }, { 17 }, { 22 }

code no      98:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      99:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     100:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     101:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     102:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     103:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     104:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     105:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     106:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 14
and is strongly generated by the following 2 elements:
(
0 0 0 1 0 0 1 1 1 1 
0 0 0 0 0 0 0 0 0 1 
0 1 1 0 0 0 1 1 0 1 
0 1 1 1 0 1 0 0 0 1 
0 0 0 0 0 1 0 0 0 0 
1 1 1 1 0 0 1 0 1 1 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 1 0 0 0 0 0 
, 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 1 1 0 0 0 1 1 0 1 
0 0 0 1 0 0 1 1 1 1 
0 1 0 1 1 0 1 0 0 1 
0 0 0 0 0 0 0 0 0 1 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
1 0 0 0 0 0 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(1, 7, 12, 9, 11, 19, 22)(2, 8, 16, 21, 6, 5, 10)(3, 17, 18, 4, 15, 14, 20), 
(1, 10, 7, 2, 12, 8, 9, 16, 11, 21, 19, 6, 22, 5)(3, 15, 17, 14, 18, 20, 4)
orbits: { 1, 22, 5, 19, 6, 11, 21, 9, 16, 12, 8, 7, 2, 10 }, { 3, 20, 4, 14, 18, 15, 17 }, { 13 }

code no     107:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     108:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 
0 1 0 1 1 0 1 0 0 1 
1 1 1 0 0 1 1 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 1 1 0 1 1 1 1 0 1 
0 0 1 0 1 1 0 0 1 1 
0 0 0 1 0 0 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(1, 3)(2, 7)(4, 10)(5, 19)(6, 12)(8, 20)(9, 21)(13, 14)(15, 16)(17, 22)
orbits: { 1, 3 }, { 2, 7 }, { 4, 10 }, { 5, 19 }, { 6, 12 }, { 8, 20 }, { 9, 21 }, { 11 }, { 13, 14 }, { 15, 16 }, { 17, 22 }, { 18 }

code no     109:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     110:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     111:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     112:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 10
and is strongly generated by the following 1 elements:
(
1 0 1 0 1 0 1 1 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 1 0 0 0 0 0 0 0 0 
0 1 1 0 1 0 1 0 1 0 
1 1 1 0 1 1 0 1 1 0 
1 1 1 0 0 1 1 0 0 0 
1 1 0 1 1 1 0 0 1 1 
0 0 0 0 0 1 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(1, 2, 4, 20, 8, 11, 10, 22, 21, 14)(3, 12, 7, 15, 19, 13, 18, 17, 6, 9)(5, 16)
orbits: { 1, 14, 21, 22, 10, 11, 8, 20, 4, 2 }, { 3, 9, 6, 17, 18, 13, 19, 15, 7, 12 }, { 5, 16 }

code no     113:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     114:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     115:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 3
and is strongly generated by the following 1 elements:
(
0 0 0 0 0 0 0 0 0 1 
0 1 0 0 0 0 1 1 1 1 
1 1 1 1 0 0 1 0 1 1 
0 0 1 1 1 0 1 0 0 1 
0 0 1 0 0 0 0 0 0 0 
1 1 0 0 1 0 0 1 0 1 
1 0 0 0 0 0 0 0 0 0 
1 0 1 1 0 1 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(1, 7, 10)(2, 18, 22)(3, 5, 21)(4, 16, 19)(6, 13, 20)(8, 9, 15)(11, 12, 14)
orbits: { 1, 10, 7 }, { 2, 22, 18 }, { 3, 21, 5 }, { 4, 19, 16 }, { 6, 20, 13 }, { 8, 15, 9 }, { 11, 14, 12 }, { 17 }

code no     116:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 1 1 0 1 0 1 0 1 0 
0 0 0 0 0 1 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(1, 2)(3, 11)(4, 5)(6, 10)(9, 16)(12, 19)(13, 20)(15, 21)(17, 22)
orbits: { 1, 2 }, { 3, 11 }, { 4, 5 }, { 6, 10 }, { 7 }, { 8 }, { 9, 16 }, { 12, 19 }, { 13, 20 }, { 14 }, { 15, 21 }, { 17, 22 }, { 18 }

code no     117:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     118:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     119:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     120:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
0 0 0 0 0 0 0 0 1 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 1 1 0 1 0 1 0 1 0 
0 0 1 0 0 0 0 0 0 0 
0 0 1 1 1 0 1 0 0 1 
1 0 0 0 0 0 0 0 0 0 
1 1 0 1 0 1 0 1 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(1, 9)(3, 7)(5, 12)(6, 16)(8, 19)(10, 13)(11, 15)(14, 21)(17, 18)
orbits: { 1, 9 }, { 2 }, { 3, 7 }, { 4 }, { 5, 12 }, { 6, 16 }, { 8, 19 }, { 10, 13 }, { 11, 15 }, { 14, 21 }, { 17, 18 }, { 20 }, { 22 }

code no     121:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     122:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
0 0 0 1 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
1 1 0 1 0 1 0 1 0 0 
1 0 1 0 1 1 1 0 1 1 
0 0 0 0 0 0 0 1 0 0 
0 1 1 1 0 1 0 0 0 1 
1 1 1 0 1 1 0 1 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(1, 4)(3, 11)(6, 13)(7, 20)(9, 18)(10, 17)(12, 21)(14, 22)(15, 19)
orbits: { 1, 4 }, { 2 }, { 3, 11 }, { 5 }, { 6, 13 }, { 7, 20 }, { 8 }, { 9, 18 }, { 10, 17 }, { 12, 21 }, { 14, 22 }, { 15, 19 }, { 16 }

code no     123:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 8
and is strongly generated by the following 2 elements:
(
0 1 0 1 1 1 0 1 1 1 
1 1 1 1 1 0 0 0 0 0 
1 1 0 0 0 0 1 1 0 1 
1 0 0 0 0 0 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
1 0 1 0 1 0 1 1 0 0 
1 1 1 0 1 1 0 1 1 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 1 1 1 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
1 1 1 0 1 1 0 1 1 0 
1 1 0 0 1 1 1 0 1 1 
0 1 1 1 0 1 0 0 0 1 
0 1 0 1 1 1 0 1 1 1 
1 0 1 1 0 1 0 0 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(1, 4, 18, 22)(2, 8, 9, 11)(3, 12, 5, 19)(6, 20, 13, 14)(7, 21, 16, 17), 
(1, 11)(2, 4)(3, 5)(6, 17)(7, 20)(8, 18)(9, 22)(10, 15)(12, 19)(13, 21)(14, 16)
orbits: { 1, 22, 11, 18, 9, 4, 8, 2 }, { 3, 19, 5, 12 }, { 6, 14, 17, 13, 16, 20, 21, 7 }, { 10, 15 }

code no     124:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 8
and is strongly generated by the following 2 elements:
(
1 0 1 1 0 1 0 0 1 0 
1 0 1 0 1 0 0 0 1 1 
1 1 1 1 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 0 1 1 1 
1 1 1 0 1 1 0 1 1 0 
0 0 0 0 0 0 0 1 0 0 
0 1 1 0 1 0 1 0 1 0 
1 1 1 0 0 1 1 0 0 0 
, 
1 0 1 0 1 0 1 1 0 0 
1 1 1 0 1 1 0 1 1 0 
0 0 1 1 1 0 1 1 1 1 
0 0 0 0 0 0 0 1 0 0 
0 1 1 1 0 1 0 0 0 1 
0 1 0 1 0 1 1 1 1 1 
0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(1, 5, 21, 15)(2, 19)(3, 14, 18, 11)(6, 12, 10, 20)(7, 17)(9, 13, 22, 16), 
(1, 18, 5, 11, 21, 3, 15, 14)(2, 7, 19, 17)(4, 8)(6, 16, 12, 9, 10, 13, 20, 22)
orbits: { 1, 15, 14, 21, 3, 5, 11, 18 }, { 2, 19, 17, 7 }, { 4, 8 }, { 6, 20, 22, 10, 13, 12, 9, 16 }

code no     125:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 16
and is strongly generated by the following 3 elements:
(
1 0 0 0 0 0 0 0 0 0 
1 1 0 1 0 1 0 1 0 0 
0 1 1 0 1 0 0 1 0 1 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 1 1 0 0 1 1 
0 0 0 0 0 0 0 1 0 0 
0 1 1 0 1 0 1 0 1 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
1 0 1 1 0 1 0 0 1 0 
, 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 1 0 0 0 0 0 0 0 0 
1 1 0 0 1 1 0 0 0 1 
0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
1 0 0 0 0 0 0 0 0 0 
, 
1 1 0 0 1 1 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 
0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 
0 1 1 0 1 0 1 0 1 0 
1 0 1 1 0 1 0 0 1 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(2, 13)(3, 20)(5, 21)(6, 8)(7, 16)(9, 11)(10, 15)(12, 22), 
(1, 10)(2, 5)(4, 8)(6, 18)(11, 20)(14, 19)(15, 17), 
(1, 4, 17, 18)(2, 3, 5, 9)(6, 15, 8, 10)(7, 16)(11, 13, 20, 21)(14, 19)
orbits: { 1, 10, 18, 15, 8, 6, 17, 4 }, { 2, 13, 5, 9, 11, 21, 3, 20 }, { 7, 16 }, { 12, 22 }, { 14, 19 }

code no     126:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 384
and is strongly generated by the following 5 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 1 0 1 1 0 0 1 1 0 
0 1 1 1 0 0 0 0 1 1 
1 0 1 1 0 1 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 
1 0 0 1 1 0 1 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 1 0 1 1 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 
1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
1 1 0 0 1 0 0 1 0 1 
0 0 0 0 0 0 0 0 1 0 
0 0 1 0 0 0 0 0 0 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
1 0 1 0 1 0 1 1 0 0 
0 0 0 0 0 0 1 0 0 0 
1 1 1 0 0 1 1 0 0 0 
1 1 0 1 0 0 1 0 0 1 
1 0 0 1 1 0 1 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 1 1 1 0 0 0 0 1 1 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 0 0 
0 1 1 0 1 1 0 0 0 1 
1 1 1 1 1 0 0 0 0 0 
1 0 0 1 1 0 1 0 1 0 
, 
0 1 1 1 0 0 0 0 1 1 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 0 0 
1 1 1 1 1 0 0 0 0 0 
1 0 0 1 1 0 1 0 1 0 
0 1 0 1 1 0 0 1 1 0 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 0 1 0 0 1 0 0 1 
0 0 0 0 1 0 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(4, 11)(6, 17)(7, 21)(8, 15)(10, 16)(12, 20)(14, 18), 
(2, 18)(3, 10)(4, 11)(5, 6)(7, 12)(8, 20)(15, 21), 
(2, 5)(6, 14)(8, 12)(9, 19)(10, 16)(15, 20)(17, 18), 
(2, 21, 5, 7)(4, 19, 11, 9)(6, 20, 18, 8)(10, 16)(12, 17, 15, 14)(13, 22), 
(1, 7, 3, 21)(2, 16, 5, 10)(4, 11)(6, 8, 15, 17)(9, 19)(12, 20, 18, 14)
orbits: { 1, 21, 7, 15, 2, 3, 12, 5, 8, 20, 17, 18, 10, 14, 6, 16 }, { 4, 11, 9, 19 }, { 13, 22 }

code no     127:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 480
and is strongly generated by the following 5 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 0 1 0 1 1 1 0 1 
1 1 0 0 1 0 0 1 0 1 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 1 0 1 0 1 0 1 1 
0 0 0 0 0 0 0 1 0 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
1 1 0 1 0 1 0 1 0 0 
1 0 1 0 1 0 1 1 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 1 0 1 1 1 0 1 
1 0 1 1 0 1 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 1 0 1 1 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 1 0 1 1 0 0 1 1 0 
1 0 1 1 0 1 0 0 1 0 
0 1 1 1 0 0 0 0 1 1 
0 0 0 0 0 0 0 0 1 0 
1 0 0 1 1 0 1 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 1 0 1 0 1 0 1 1 
0 1 1 1 0 0 0 0 1 1 
1 1 1 0 0 1 1 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 1 0 1 1 0 0 1 1 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
, 
0 1 0 1 1 0 0 1 1 0 
0 0 0 0 1 0 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
1 1 0 1 0 1 0 1 0 0 
1 0 0 1 1 0 1 0 1 0 
1 0 1 1 0 1 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 1 1 1 0 1 
0 1 0 0 0 0 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(3, 12)(4, 20)(5, 19)(6, 7)(8, 10)(9, 22)(15, 17)(16, 21), 
(2, 6)(3, 7)(4, 13)(5, 14)(9, 20)(10, 15)(16, 19)(17, 18), 
(2, 14, 18)(3, 16, 10)(5, 17, 6)(7, 19, 15)(8, 12, 21), 
(2, 7)(4, 22)(5, 21)(6, 12)(8, 17)(13, 20)(14, 19)(15, 18), 
(1, 18, 21, 17)(2, 10, 16, 5)(3, 8, 7, 12)(4, 13)(6, 14, 19, 15)(9, 20)
orbits: { 1, 17, 15, 18, 5, 8, 21, 10, 19, 14, 6, 16, 3, 12, 2, 7 }, { 4, 20, 13, 22, 9 }, { 11 }

code no     128:
================
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 120960
and is strongly generated by the following 7 elements:
(
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
1 0 0 1 1 0 0 0 1 1 
1 1 0 0 1 0 0 1 1 0 
0 0 1 1 1 0 1 0 1 0 
0 0 0 0 0 0 0 0 1 0 
0 1 1 0 1 1 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
1 0 0 1 1 0 0 0 1 1 
1 0 1 1 0 0 0 1 0 1 
0 1 0 1 1 1 0 0 0 1 
0 1 1 1 0 0 1 0 0 1 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
1 1 0 0 1 0 0 1 1 0 
1 0 0 1 1 0 0 0 1 1 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 1 1 1 0 1 0 1 0 
0 1 1 1 0 0 1 0 0 1 
1 0 1 0 1 0 1 1 0 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 0 0 1 1 0 0 0 1 1 
0 0 1 1 1 0 1 0 1 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 1 1 1 0 0 1 0 0 1 
1 1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 1 1 1 0 1 0 1 0 
1 0 1 0 1 0 1 1 0 0 
, 
1 0 0 0 0 0 0 0 0 0 
1 1 1 0 0 1 1 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 1 0 1 1 1 0 0 0 1 
1 0 1 0 1 0 1 1 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
1 1 1 1 1 0 0 0 0 0 
, 
1 1 1 0 0 1 1 0 0 0 
1 1 0 0 1 0 0 1 1 0 
0 0 0 0 0 0 1 0 0 0 
1 1 0 1 0 1 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 1 0 0 0 0 0 0 0 0 
0 1 1 0 1 1 0 0 1 0 
1 0 0 0 0 0 0 0 0 0 
1 0 1 0 1 0 1 1 0 0 
0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(5, 11)(6, 21)(7, 17)(8, 16)(10, 15)(12, 20)(13, 19), 
(4, 21, 6)(5, 17, 12)(7, 11, 20)(8, 16, 18)(9, 13, 19), 
(4, 17)(5, 21)(6, 12)(8, 16)(9, 19)(10, 14)(11, 20), 
(3, 21, 4)(5, 20, 16)(7, 9, 8)(11, 17, 19)(12, 18, 13), 
(3, 20, 13, 16, 9, 5)(4, 21, 18, 12, 7, 8)(6, 19)(10, 15, 14)(11, 17), 
(2, 4, 20, 12)(5, 8, 14, 7)(6, 11, 10, 18)(13, 19)(15, 17, 16, 21), 
(1, 8, 12)(2, 6, 17)(3, 15, 7)(4, 16, 13)(5, 14, 9)
orbits: { 1, 12, 20, 17, 6, 13, 18, 8, 11, 5, 3, 4, 7, 15, 21, 19, 2, 9, 16, 10, 14 }, { 22 }