the 128 isometry classes of irreducible [22,13,5]_2 codes are:

code no       1:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no       2:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no       3:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no       4:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no       5:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no       6:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no       7:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no       8:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no       9:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      10:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      11:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      12:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      13:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      14:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      15:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      16:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      17:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      18:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      19:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      20:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      21:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
0 1 0 1 0 1 1 0 0 
1 1 0 0 1 1 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 
1 1 0 1 1 0 1 1 0 
1 0 1 1 0 1 1 1 0 
0 0 0 0 1 0 0 0 0 
0 1 1 0 0 0 1 1 1 
)
acting on the columns of the generator matrix as follows (in order):
(1, 14)(2, 12)(3, 4)(5, 8)(6, 17)(7, 18)(9, 22)(10, 20)(11, 13)(15, 16)
orbits: { 1, 14 }, { 2, 12 }, { 3, 4 }, { 5, 8 }, { 6, 17 }, { 7, 18 }, { 9, 22 }, { 10, 20 }, { 11, 13 }, { 15, 16 }, { 19 }, { 21 }

code no      22:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      23:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      24:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      25:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      26:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      27:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      28:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      29:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      30:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      31:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      32:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      33:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      34:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      35:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      36:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      37:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      38:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      39:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      40:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      41:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      42:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      43:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      44:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      45:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      46:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      47:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      48:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      49:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      50:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      51:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      52:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      53:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      54:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      55:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      56:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      57:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      58:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      59:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      60:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      61:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      62:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      63:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      64:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      65:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      66:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      67:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      68:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      69:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      70:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      71:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      72:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      73:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      74:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      75:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      76:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      77:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      78:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      79:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      80:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      81:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      82:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      83:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      84:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      85:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      86:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      87:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      88:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      89:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      90:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      91:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      92:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      93:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      94:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      95:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      96:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
1 0 0 0 0 0 0 0 0 
1 1 0 1 1 0 1 1 0 
1 0 0 0 1 0 1 1 1 
1 1 0 1 1 0 0 0 1 
1 1 1 1 0 0 0 0 0 
1 0 1 0 1 0 1 0 0 
1 1 1 1 1 1 1 1 1 
1 1 0 0 1 1 0 0 0 
0 1 1 0 0 0 1 1 1 
)
acting on the columns of the generator matrix as follows (in order):
(2, 17)(3, 22)(4, 18)(5, 11)(6, 13)(7, 10)(8, 12)(9, 21)(15, 19)(16, 20)
orbits: { 1 }, { 2, 17 }, { 3, 22 }, { 4, 18 }, { 5, 11 }, { 6, 13 }, { 7, 10 }, { 8, 12 }, { 9, 21 }, { 14 }, { 15, 19 }, { 16, 20 }

code no      97:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      98:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no      99:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     100:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 4
and is strongly generated by the following 1 elements:
(
0 0 1 1 1 1 0 1 1 
1 1 0 0 1 1 0 0 0 
1 1 1 1 1 1 1 1 1 
1 1 0 1 1 0 1 1 0 
0 1 1 0 1 0 0 1 0 
0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 
0 1 0 0 1 0 1 0 1 
0 1 0 0 0 1 1 1 1 
)
acting on the columns of the generator matrix as follows (in order):
(1, 22, 9, 20)(2, 6, 18, 12)(3, 16, 11, 10)(4, 15, 5, 17)(7, 21, 19, 8)
orbits: { 1, 20, 9, 22 }, { 2, 12, 18, 6 }, { 3, 10, 11, 16 }, { 4, 17, 5, 15 }, { 7, 8, 19, 21 }, { 13 }, { 14 }

code no     101:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     102:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     103:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     104:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     105:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     106:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     107:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     108:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     109:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     110:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     111:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     112:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     113:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     114:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     115:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     116:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     117:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
0 1 1 1 1 0 0 0 1 
0 1 1 0 1 0 0 1 0 
0 0 0 0 0 0 0 0 1 
0 0 0 1 0 0 0 0 0 
1 1 0 1 1 0 0 1 1 
1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 1 0 0 
1 1 1 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(1, 18)(2, 15)(3, 9)(5, 20)(6, 12)(8, 11)(10, 19)(13, 22)(14, 17)(16, 21)
orbits: { 1, 18 }, { 2, 15 }, { 3, 9 }, { 4 }, { 5, 20 }, { 6, 12 }, { 7 }, { 8, 11 }, { 10, 19 }, { 13, 22 }, { 14, 17 }, { 16, 21 }

code no     118:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
0 1 1 1 0 0 1 0 1 
0 0 0 0 0 0 0 0 1 
0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 
1 0 1 1 0 1 1 1 0 
0 0 0 1 0 0 0 0 0 
1 1 1 0 0 1 0 0 1 
1 0 1 0 1 0 1 0 0 
0 1 0 0 0 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(1, 20)(2, 9)(4, 6)(5, 17)(7, 18)(8, 13)(11, 14)(12, 16)(15, 22)(19, 21)
orbits: { 1, 20 }, { 2, 9 }, { 3 }, { 4, 6 }, { 5, 17 }, { 7, 18 }, { 8, 13 }, { 10 }, { 11, 14 }, { 12, 16 }, { 15, 22 }, { 19, 21 }

code no     119:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     120:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     121:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     122:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 4
and is strongly generated by the following 1 elements:
(
0 0 0 0 1 0 0 0 0 
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(1, 2, 3, 5)(4, 8, 7, 6)(11, 15, 13, 12)(14, 16, 17, 18)(19, 22, 21, 20)
orbits: { 1, 5, 3, 2 }, { 4, 6, 7, 8 }, { 9 }, { 10 }, { 11, 12, 13, 15 }, { 14, 18, 17, 16 }, { 19, 20, 21, 22 }

code no     123:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }

code no     124:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 4
and is strongly generated by the following 1 elements:
(
0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 
1 1 0 0 1 1 0 0 0 
1 1 0 1 1 0 1 1 0 
0 0 0 0 0 0 0 0 1 
0 1 1 1 0 1 0 0 1 
1 0 1 0 1 1 0 0 1 
1 1 0 0 1 0 0 1 1 
0 0 0 0 1 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(1, 22, 8, 2)(3, 13, 16, 12)(4, 18, 10, 17)(5, 9)(6, 15, 21, 19)(7, 14, 11, 20)
orbits: { 1, 2, 8, 22 }, { 3, 12, 16, 13 }, { 4, 17, 10, 18 }, { 5, 9 }, { 6, 19, 21, 15 }, { 7, 20, 11, 14 }

code no     125:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 4
and is strongly generated by the following 1 elements:
(
1 0 0 0 0 0 0 0 0 
1 1 0 0 0 1 1 0 1 
0 1 0 1 0 1 1 0 0 
0 0 0 1 0 0 0 0 0 
1 0 1 0 1 0 1 0 0 
0 1 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 0 0 
1 1 0 0 1 1 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(2, 6, 16, 20)(3, 18, 15, 14)(5, 21, 22, 13)(7, 8, 17, 10)(9, 11, 19, 12)
orbits: { 1 }, { 2, 20, 16, 6 }, { 3, 14, 15, 18 }, { 4 }, { 5, 13, 22, 21 }, { 7, 10, 17, 8 }, { 9, 12, 19, 11 }

code no     126:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 4
and is strongly generated by the following 1 elements:
(
0 1 1 0 1 0 0 1 0 
0 1 0 1 0 0 1 1 1 
0 0 0 0 0 0 1 0 0 
1 0 1 1 1 0 0 0 1 
0 0 0 0 1 0 0 0 0 
0 0 1 1 0 1 1 0 1 
0 1 0 1 0 1 1 0 0 
1 1 0 0 1 1 0 0 0 
1 1 0 1 1 0 1 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(1, 11, 20, 15)(2, 16, 13, 21)(3, 22, 14, 7)(4, 17, 9, 18)(6, 12, 8, 19)
orbits: { 1, 15, 20, 11 }, { 2, 21, 13, 16 }, { 3, 7, 14, 22 }, { 4, 18, 9, 17 }, { 5 }, { 6, 19, 8, 12 }, { 10 }

code no     127:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 4
and is strongly generated by the following 1 elements:
(
0 0 1 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
1 1 1 1 0 0 0 0 0 
0 1 0 1 0 1 1 0 0 
0 0 0 0 0 0 0 0 1 
1 1 0 0 1 1 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 1 0 1 1 0 1 1 
)
acting on the columns of the generator matrix as follows (in order):
(1, 11, 4, 3)(5, 17, 18, 14)(6, 15, 22, 9)(7, 8, 20, 12)(10, 21, 19, 16)
orbits: { 1, 3, 4, 11 }, { 2 }, { 5, 14, 18, 17 }, { 6, 9, 22, 15 }, { 7, 12, 20, 8 }, { 10, 16, 19, 21 }, { 13 }

code no     128:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 4
and is strongly generated by the following 2 elements:
(
1 0 0 1 1 1 0 1 1 
0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 1 0 1 1 1 0 1 
, 
1 1 1 1 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
1 1 1 0 0 0 0 1 1 
1 1 0 0 1 1 0 0 0 
0 1 0 1 0 1 1 0 0 
1 1 1 0 0 1 1 1 0 
0 1 1 0 1 0 0 1 0 
1 1 1 1 1 1 1 1 1 
1 0 1 0 1 0 1 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(1, 21)(3, 6)(4, 8)(5, 7)(9, 19)(10, 12)(11, 18)(13, 22)(14, 15)(17, 20), 
(1, 18, 21, 11)(3, 17, 6, 20)(4, 10, 8, 12)(5, 15, 7, 14)(9, 22, 19, 13)
orbits: { 1, 21, 11, 18 }, { 2 }, { 3, 6, 20, 17 }, { 4, 8, 12, 10 }, { 5, 7, 14, 15 }, { 9, 19, 13, 22 }, { 16 }