the 9 isometry classes of irreducible [24,11,8]_2 codes are:

code no       1:
================
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 40320
and is strongly generated by the following 11 elements:
(
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
1 0 1 0 1 1 0 0 1 1 0 1 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
1 0 0 1 1 0 1 1 1 0 0 1 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
1 0 0 1 1 0 1 1 1 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
1 0 1 0 1 1 0 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
1 0 1 0 1 1 0 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
1 1 1 0 0 0 1 0 1 0 1 1 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
1 0 1 0 1 1 0 0 1 1 0 1 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
1 0 1 1 0 1 0 1 0 0 1 1 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
1 0 1 0 1 1 0 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
1 0 1 0 1 1 0 0 1 1 0 1 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
1 0 1 1 0 1 0 1 0 0 1 1 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
1 0 0 1 1 0 1 1 1 0 0 1 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
1 0 1 0 1 1 0 0 1 1 0 1 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
1 0 1 1 0 1 0 1 0 0 1 1 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 0 0 0 1 0 1 0 1 1 0 
1 0 1 0 1 1 0 0 1 1 0 1 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
1 0 1 1 0 1 0 1 0 0 1 1 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 
)
acting on the columns of the generator matrix as follows (in order):
(13, 14), 
(5, 10)(6, 8)(7, 9)(11, 12)(15, 16)(17, 21)(18, 22)(19, 20), 
(5, 22)(6, 21)(7, 20)(8, 17)(9, 19)(10, 18)(11, 16)(12, 15)(13, 14), 
(5, 20)(6, 12)(7, 22)(8, 11)(9, 18)(10, 19)(13, 14)(15, 21)(16, 17), 
(5, 21)(6, 22)(7, 12)(8, 18)(9, 11)(10, 17)(13, 14)(15, 20)(16, 19), 
(4, 23, 24)(5, 22, 6)(7, 16, 18)(8, 15, 11)(9, 10, 12)(13, 14)(17, 20, 19), 
(3, 4, 23)(5, 16, 8)(6, 19, 17)(9, 18, 22)(10, 21, 11)(12, 20, 15), 
(3, 9, 23, 11)(4, 16, 24, 19)(5, 12, 6, 15)(7, 21, 20, 22)(8, 18)(10, 17), 
(2, 3, 4)(5, 15, 6)(8, 18, 12)(9, 19, 20)(10, 11, 21)(13, 14)(16, 17, 22), 
(2, 21, 17, 16, 15)(3, 7, 5, 20, 22)(4, 11, 9, 18, 8)(6, 19, 23, 10, 12), 
(2, 22, 3, 5, 12, 15, 24)(4, 21, 18, 16, 9, 20, 19)(6, 11, 10, 17, 7, 8, 23)(13, 14)
orbits: { 1 }, { 2, 4, 15, 24, 3, 19, 8, 16, 12, 21, 20, 6, 5, 23, 11, 22, 9, 10, 17, 18, 7 }, { 13, 14 }

code no       2:
================
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 0 1 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1920
and is strongly generated by the following 7 elements:
(
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
1 0 0 1 1 0 1 1 1 0 0 1 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
1 0 1 0 1 1 0 0 1 1 0 1 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
1 0 0 1 1 0 1 1 1 0 0 1 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
1 0 1 1 0 1 0 1 0 0 1 1 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
1 0 1 0 0 1 1 1 1 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
1 0 1 1 0 1 0 1 0 0 1 1 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
1 0 1 0 1 1 0 0 1 1 0 1 0 
1 0 0 1 1 0 1 1 1 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
1 0 1 0 1 1 0 0 1 1 0 1 0 
1 0 1 1 0 1 0 1 0 0 1 1 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(5, 9)(6, 16)(7, 10)(8, 15)(11, 21)(12, 17)(18, 20)(19, 22), 
(5, 10)(6, 8)(7, 9)(11, 12)(15, 16)(17, 21)(18, 22)(19, 20), 
(5, 11)(6, 19)(7, 17)(8, 20)(9, 21)(10, 12)(15, 18)(16, 22), 
(5, 22)(6, 21)(7, 20)(8, 17)(9, 19)(10, 18)(11, 16)(12, 15), 
(4, 23)(5, 21)(7, 9)(10, 17)(11, 12)(13, 24)(15, 19)(16, 20), 
(3, 23, 4)(5, 12, 17)(6, 15, 10)(7, 18, 22)(8, 21, 20)(11, 16, 19), 
(2, 12, 11, 6, 8)(3, 17, 7, 18, 15)(4, 9, 10, 20, 22)(5, 21, 16, 19, 23)
orbits: { 1 }, { 2, 8, 15, 6, 20, 17, 16, 18, 12, 19, 21, 10, 11, 7, 3, 22, 5, 9, 4, 23 }, { 13, 24 }, { 14 }

code no       3:
================
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
1 0 0 1 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 576
and is strongly generated by the following 8 elements:
(
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
1 0 0 1 1 0 1 1 1 0 0 1 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
1 0 0 1 1 1 0 1 0 1 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
1 0 0 1 1 0 1 1 1 0 0 1 0 
1 0 1 0 1 1 0 0 1 1 0 1 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
1 0 1 0 1 1 0 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
1 0 1 0 1 1 0 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
1 0 1 0 0 1 1 1 1 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 0 0 1 
1 0 0 1 1 1 0 1 0 1 0 0 1 
1 0 1 0 0 1 1 1 1 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(6, 7, 15)(8, 18, 21)(9, 17, 12)(10, 19, 20)(11, 22, 16)(13, 23, 24), 
(5, 18)(6, 17)(7, 19)(8, 21)(9, 20)(10, 22)(11, 15)(12, 16), 
(5, 21)(6, 22)(7, 12)(8, 18)(9, 11)(10, 17)(15, 20)(16, 19), 
(5, 17)(6, 18)(7, 11)(8, 22)(9, 12)(10, 21)(15, 19)(16, 20), 
(5, 9)(6, 16)(7, 10)(8, 15)(11, 21)(12, 17)(18, 20)(19, 22), 
(3, 4)(7, 15)(8, 11)(9, 17)(10, 19)(13, 23)(16, 18)(21, 22), 
(2, 3, 4)(5, 21, 19)(6, 20, 18)(7, 22, 17)(8, 9, 10)(11, 15, 12), 
(1, 14)(2, 23, 4, 13)(3, 24)(5, 15, 8, 9)(6, 22, 16, 12)(7, 19, 10, 17)(18, 21)
orbits: { 1, 14 }, { 2, 4, 13, 3, 23, 24 }, { 5, 18, 21, 17, 9, 19, 8, 6, 20, 16, 10, 11, 22, 12, 7, 15 }

code no       4:
================
1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1774080
and is strongly generated by the following 11 elements:
(
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
0 1 0 1 0 1 1 1 1 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
0 1 1 0 1 0 1 1 1 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
0 1 0 1 1 1 0 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
1 0 1 1 1 0 0 0 1 0 1 1 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 1 1 0 1 0 1 1 1 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 1 1 0 1 0 1 1 1 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 1 0 1 1 1 0 0 1 1 0 1 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 0 0 1 1 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
0 1 1 0 1 0 1 1 1 0 0 1 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
0 1 0 1 1 1 0 0 1 1 0 1 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
0 1 1 0 1 0 1 1 1 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(13, 24), 
(8, 9)(10, 15)(11, 16)(12, 19)(17, 18)(20, 21)(22, 23), 
(5, 9)(6, 15)(7, 10)(8, 14)(11, 12)(16, 20)(17, 21)(18, 19), 
(5, 7)(6, 14)(8, 15)(9, 10)(11, 16)(12, 20)(17, 18)(19, 21), 
(5, 6)(7, 14)(8, 15)(9, 10)(11, 17)(16, 18)(22, 23), 
(5, 20)(6, 21)(7, 12)(8, 18)(9, 16)(10, 11)(14, 19)(15, 17), 
(4, 22, 23)(5, 17, 7)(6, 9, 12)(8, 11, 10)(14, 21, 15)(16, 19, 20), 
(3, 4)(5, 19)(6, 12)(7, 20)(9, 15)(11, 18)(14, 21), 
(3, 9, 21, 10, 19)(4, 15, 6, 11, 12)(5, 18, 14, 22, 16)(7, 23, 17, 20, 8), 
(2, 23, 22, 4, 3)(5, 16, 18, 8, 17)(6, 14, 9, 15, 12)(7, 19, 11, 20, 10), 
(1, 16, 21)(2, 17, 19, 4, 11, 20)(3, 18, 12)(5, 9, 6, 15, 7, 8)(10, 14)
orbits: { 1, 21, 20, 17, 19, 6, 14, 9, 16, 12, 5, 7, 11, 18, 15, 23, 8, 2, 10, 3, 22, 4 }, { 13, 24 }

code no       5:
================
1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 887040
and is strongly generated by the following 11 elements:
(
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
0 1 1 1 0 0 1 0 0 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 1 0 1 1 1 0 0 1 1 0 1 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
0 1 1 0 1 0 1 1 1 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
0 1 0 1 1 1 0 0 1 1 0 1 0 
0 1 1 0 1 0 1 1 1 0 0 1 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
0 1 1 0 1 0 1 1 1 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
1 0 1 1 1 0 0 0 1 0 1 1 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 0 0 1 1 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 1 0 1 0 1 1 1 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
0 0 0 1 1 1 1 1 0 0 1 1 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 1 1 1 0 0 0 1 0 1 1 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 0 0 1 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
0 1 0 1 1 1 0 0 1 1 0 1 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 1 1 0 1 0 1 1 1 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
0 1 0 1 1 1 0 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 1 1 1 1 1 0 0 1 1 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(13, 24), 
(5, 7)(6, 14)(8, 15)(9, 10)(11, 16)(12, 20)(17, 18)(19, 21), 
(5, 21)(6, 20)(7, 19)(8, 11)(9, 17)(10, 18)(12, 14)(15, 16), 
(5, 17)(6, 16)(7, 18)(8, 12)(9, 21)(10, 19)(11, 14)(15, 20), 
(5, 6)(7, 14)(8, 10)(9, 15)(11, 18)(12, 19)(16, 17)(20, 21), 
(4, 22, 23)(5, 17, 7)(6, 9, 12)(8, 11, 10)(14, 21, 15)(16, 19, 20), 
(3, 22, 4)(6, 21, 20)(7, 9, 10)(8, 19, 16)(11, 14, 17)(12, 15, 18), 
(3, 9, 14)(4, 17, 12)(6, 21, 20)(7, 22, 15)(10, 18, 11)(16, 19, 23), 
(2, 8, 16, 5, 19)(3, 20, 21, 15, 9)(4, 17, 14, 18, 6)(7, 10, 12, 11, 22), 
(1, 23)(4, 22)(5, 15, 18, 12)(6, 21, 11, 10)(7, 8, 17, 20)(9, 14, 19, 16), 
(1, 16, 12, 15, 20, 21, 7)(2, 17, 14, 9, 5, 6, 19)(3, 18, 4, 22, 11, 8, 10)
orbits: { 1, 23, 7, 22, 19, 5, 18, 14, 17, 10, 15, 20, 21, 4, 3, 11, 12, 16, 8, 6, 9, 2 }, { 13, 24 }

code no       6:
================
1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
1 0 0 1 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 120960
and is strongly generated by the following 9 elements:
(
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
0 1 1 0 1 0 1 1 1 0 0 1 0 
0 1 0 1 1 1 0 0 1 1 0 1 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
1 0 0 1 1 1 0 1 0 1 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
0 1 0 1 1 1 0 0 1 1 0 1 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 1 0 1 1 1 0 0 1 1 0 1 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
0 1 1 0 1 0 1 1 1 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
0 1 0 1 1 1 0 0 1 1 0 1 0 
0 1 1 0 1 0 1 1 1 0 0 1 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 0 0 1 1 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
0 1 0 1 0 1 1 1 1 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 0 0 1 1 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
0 1 1 0 1 0 1 1 1 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 0 0 1 1 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
0 1 1 0 1 0 1 1 1 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 1 1 0 1 0 1 1 1 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
0 1 0 1 1 1 0 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 1 1 1 1 1 0 0 1 1 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(6, 7, 14)(8, 16, 19)(9, 17, 21)(10, 11, 20)(12, 15, 18)(13, 23, 24), 
(5, 8)(6, 10)(7, 15)(9, 14)(11, 21)(12, 17)(16, 19)(18, 20), 
(5, 21)(6, 20)(7, 19)(8, 11)(9, 17)(10, 18)(12, 14)(15, 16), 
(5, 17)(6, 16)(7, 18)(8, 12)(9, 21)(10, 19)(11, 14)(15, 20), 
(5, 10)(6, 8)(7, 9)(11, 20)(12, 16)(14, 15)(17, 19)(18, 21), 
(4, 22)(5, 9, 8, 14)(6, 17, 10, 12)(7, 21, 15, 11)(13, 23)(16, 18, 19, 20), 
(3, 4, 22)(5, 17, 11)(6, 15, 8)(7, 19, 12)(9, 18, 20)(10, 21, 16), 
(2, 17, 22, 8)(3, 20, 4, 7)(5, 6, 18, 9)(10, 16)(11, 15, 19, 12)(14, 21), 
(1, 16, 12, 15, 20, 21, 7)(2, 17, 14, 9, 5, 6, 19)(3, 18, 4, 22, 11, 8, 10)
orbits: { 1, 7, 6, 15, 19, 18, 9, 11, 12, 4, 21, 14, 10, 20, 16, 8, 5, 17, 3, 22, 2 }, { 13, 24, 23 }

code no       7:
================
1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 40320
and is strongly generated by the following 9 elements:
(
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 1 0 1 1 1 0 0 1 1 0 1 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
0 1 1 0 1 0 1 1 1 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 1 1 0 1 0 1 1 1 0 0 1 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
0 1 1 0 1 0 1 1 1 0 0 1 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
0 1 0 1 1 1 0 0 1 1 0 1 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 0 0 1 1 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
0 1 0 1 1 1 0 0 1 1 0 1 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
0 1 0 1 0 1 1 1 1 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 0 0 1 1 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
0 1 1 0 1 0 1 1 1 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 0 0 1 1 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 1 1 1 0 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 0 0 1 1 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
0 1 1 0 1 0 1 1 1 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
0 1 0 1 1 1 0 0 1 1 0 1 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 1 1 1 1 1 0 0 1 1 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(5, 21)(6, 20)(7, 19)(8, 11)(9, 17)(10, 18)(12, 14)(15, 16), 
(5, 15)(6, 9)(7, 8)(10, 14)(11, 19)(12, 18)(16, 21)(17, 20), 
(5, 12)(6, 19)(7, 20)(8, 17)(9, 11)(10, 16)(14, 21)(15, 18), 
(5, 8)(6, 10)(7, 15)(9, 14)(11, 21)(12, 17)(16, 19)(18, 20), 
(4, 22)(5, 14, 8, 9)(6, 12, 10, 17)(7, 11, 15, 21)(13, 23)(16, 20, 19, 18), 
(3, 4, 22)(5, 17, 11)(6, 15, 8)(7, 19, 12)(9, 18, 20)(10, 21, 16), 
(2, 4, 22)(5, 7, 21)(6, 11, 9)(8, 10, 12)(14, 15, 17)(16, 18, 20), 
(2, 17, 22, 8)(3, 20, 4, 7)(5, 6, 18, 9)(10, 16)(11, 15, 19, 12)(14, 21), 
(1, 20, 2, 6, 21)(3, 16, 7, 9, 12)(4, 15, 11, 19, 22)(8, 14, 17, 18, 10)
orbits: { 1, 21, 5, 16, 14, 11, 15, 10, 7, 6, 12, 8, 9, 19, 18, 20, 3, 17, 4, 2, 22 }, { 13, 23 }, { 24 }

code no       8:
================
1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
0 1 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 0 1 1 1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 138240
and is strongly generated by the following 13 elements:
(
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 1 0 1 1 1 0 0 1 1 0 1 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
0 1 1 0 1 0 1 1 1 0 0 1 0 
0 0 1 1 1 0 1 0 1 1 0 0 1 
1 1 1 1 0 0 0 1 1 1 0 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
1 0 1 0 0 1 1 1 1 0 0 0 1 
0 1 1 0 1 1 0 1 0 1 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 1 1 1 0 1 0 1 1 0 0 1 
0 1 1 0 1 1 0 1 0 1 0 0 1 
1 0 1 0 0 1 1 1 1 0 0 0 1 
0 1 0 1 1 1 0 0 1 1 0 1 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
0 1 1 0 1 1 0 1 0 1 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
0 1 0 1 1 1 0 0 1 1 0 1 0 
0 1 1 0 1 0 1 1 1 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
0 1 1 0 1 1 0 1 0 1 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 1 1 0 1 0 1 1 1 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
0 1 0 1 1 1 0 0 1 1 0 1 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
0 1 1 0 1 0 1 1 1 0 0 1 0 
0 1 0 1 1 1 0 0 1 1 0 1 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
0 1 0 1 1 1 0 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 1 1 1 0 1 0 1 1 0 0 1 
1 0 1 0 0 1 1 1 1 0 0 0 1 
1 0 1 0 1 0 1 1 0 1 1 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 1 1 0 1 0 1 1 1 0 0 1 0 
1 0 1 0 0 1 1 1 1 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
0 1 0 1 1 1 0 0 1 1 0 1 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
0 1 0 1 1 1 0 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
0 1 1 0 1 0 1 1 1 0 0 1 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(8, 21)(9, 20)(10, 19)(11, 24)(12, 15)(13, 18)(16, 23)(17, 22), 
(8, 13)(9, 22)(10, 23)(11, 12)(15, 24)(16, 19)(17, 20)(18, 21), 
(8, 24)(9, 23)(10, 22)(11, 21)(12, 18)(13, 15)(16, 20)(17, 19), 
(8, 10)(9, 15)(11, 17)(12, 20)(13, 23)(16, 18)(19, 21)(22, 24), 
(6, 7, 14)(8, 11, 21)(9, 18, 19)(10, 16, 12)(13, 22, 23)(15, 17, 20), 
(5, 19)(6, 12)(7, 21)(8, 16)(9, 18)(10, 17)(11, 15)(14, 20), 
(5, 18)(6, 11)(7, 17)(8, 20)(9, 19)(10, 21)(12, 15)(14, 16), 
(5, 10)(6, 8)(7, 9)(11, 20)(12, 16)(14, 15)(17, 19)(18, 21), 
(5, 14)(6, 7)(8, 9)(10, 15)(11, 17)(12, 21)(16, 18)(19, 20), 
(5, 20, 11, 10, 13)(6, 19, 17, 8, 24)(7, 21, 18, 9, 22)(12, 16, 15, 23, 14), 
(3, 4)(7, 14)(8, 11)(9, 16)(10, 18)(12, 19)(13, 22)(15, 17), 
(2, 3, 4)(5, 15, 12)(6, 10, 20)(7, 9, 21)(8, 19, 14)(11, 16, 17), 
(1, 9, 21)(2, 8, 12)(3, 15, 20)(4, 10, 19)(5, 14, 6)(11, 17, 16)
orbits: { 1, 21, 8, 18, 11, 19, 7, 10, 12, 9, 13, 24, 16, 20, 6, 17, 14, 2, 5, 15, 22, 23, 4, 3 }

code no       9:
================
1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
0 1 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 5760
and is strongly generated by the following 7 elements:
(
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
0 1 0 1 1 1 0 0 1 1 0 1 0 
0 1 1 0 1 0 1 1 1 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
0 1 1 0 1 1 0 1 0 1 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
0 1 1 0 1 0 1 1 1 0 0 1 0 
0 1 0 1 1 1 0 0 1 1 0 1 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
0 1 0 1 1 1 0 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
1 0 0 1 0 1 1 0 1 1 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 1 1 0 1 0 1 1 1 0 0 1 0 
1 0 1 0 0 1 1 1 1 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
0 1 0 1 1 1 0 0 1 1 0 1 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
1 0 1 0 1 0 1 1 0 1 1 0 0 
1 1 1 1 0 0 0 1 1 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
, 
0 1 0 1 1 1 0 0 1 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 
1 1 0 0 0 1 1 1 0 1 0 1 0 
0 1 1 0 1 0 1 1 1 0 0 1 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
1 1 0 0 1 1 0 1 1 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(6, 7, 14)(8, 11, 21)(9, 18, 19)(10, 16, 12)(13, 22, 23)(15, 17, 20), 
(5, 18)(6, 11)(7, 17)(8, 20)(9, 19)(10, 21)(12, 15)(14, 16), 
(5, 14)(6, 7)(8, 9)(10, 15)(11, 17)(12, 21)(16, 18)(19, 20), 
(5, 10)(6, 8)(7, 9)(11, 20)(12, 16)(14, 15)(17, 19)(18, 21), 
(3, 4)(7, 14)(8, 11)(9, 16)(10, 18)(12, 19)(13, 22)(15, 17), 
(2, 3, 4)(5, 15, 12)(6, 10, 20)(7, 9, 21)(8, 19, 14)(11, 16, 17), 
(1, 9, 21)(2, 8, 12)(3, 15, 20)(4, 10, 19)(5, 14, 6)(11, 17, 16)
orbits: { 1, 21, 11, 10, 12, 18, 9, 8, 6, 17, 20, 16, 15, 5, 4, 19, 7, 14, 2, 3 }, { 13, 23, 22 }, { 24 }