the 5 isometry classes of irreducible [25,19,4]_2 codes are:

code no       1:
================
1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 64512
and is strongly generated by the following 12 elements:
(
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
1 0 0 1 0 1 
1 0 0 1 1 0 
, 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
1 1 1 1 1 0 
1 1 1 1 0 1 
, 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
1 0 0 1 1 0 
1 0 0 1 0 1 
, 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 1 1 1 0 
0 0 1 1 0 1 
, 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
1 1 0 1 0 0 
1 1 0 0 1 0 
1 1 0 0 0 1 
, 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 1 1 1 0 0 
0 1 1 0 1 0 
0 1 1 0 0 1 
, 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 1 1 1 0 0 
1 1 0 1 0 0 
0 1 0 1 1 0 
0 1 0 1 0 1 
, 
1 0 0 0 0 0 
0 1 0 0 0 0 
1 1 0 1 0 0 
0 0 1 0 0 0 
0 1 1 0 0 1 
0 1 1 0 1 0 
, 
1 0 0 0 0 0 
1 0 1 1 0 0 
1 1 1 0 0 0 
0 0 1 0 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 
, 
1 0 0 0 0 0 
0 0 0 1 0 0 
1 0 1 1 0 0 
0 1 0 0 0 0 
0 1 1 0 1 0 
0 1 1 0 0 1 
, 
1 0 1 1 0 0 
0 1 1 1 0 0 
0 0 0 1 0 0 
1 1 1 0 0 0 
1 1 1 1 1 0 
1 1 0 0 0 1 
, 
0 0 1 1 1 0 
1 1 1 1 1 0 
1 0 0 1 1 0 
0 0 0 0 1 0 
0 1 0 0 0 0 
1 1 1 1 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(5, 21)(6, 14)(11, 22)(12, 23)(13, 24)(15, 18)(16, 19)(17, 20), 
(5, 17)(6, 24)(11, 16)(12, 15)(13, 14)(18, 23)(19, 22)(20, 21), 
(5, 14)(6, 21)(11, 15)(12, 16)(13, 17)(18, 22)(19, 23)(20, 24), 
(5, 16)(6, 23)(11, 17)(12, 14)(13, 15)(18, 24)(19, 21)(20, 22), 
(4, 8)(5, 11)(6, 18)(9, 10)(12, 13)(19, 20), 
(4, 10)(5, 13)(6, 20)(8, 9)(11, 12)(18, 19), 
(3, 9, 7, 10)(4, 8)(5, 14, 11, 15)(6, 21, 18, 22)(16, 17)(23, 24), 
(3, 4, 7, 8)(5, 22, 17, 20)(6, 15, 24, 13)(9, 10)(11, 21, 16, 19)(12, 18, 14, 23), 
(2, 9)(3, 4, 8, 7)(11, 16)(12, 14, 15, 13)(18, 23)(19, 21, 22, 20), 
(2, 4)(3, 7, 10, 9)(5, 17, 11, 13)(6, 24, 18, 20)(12, 14, 16, 15)(19, 21, 23, 22), 
(1, 10, 2, 9)(3, 8, 7, 4)(5, 16, 11, 17)(6, 18)(12, 14, 13, 15)(19, 20), 
(1, 11, 8, 16)(2, 5, 4, 17)(3, 13, 10, 14)(6, 22, 19, 24)(7, 12, 9, 15)(18, 21, 20, 23)
orbits: { 1, 9, 16, 10, 8, 3, 2, 12, 19, 11, 5, 17, 21, 14, 4, 7, 13, 23, 15, 22, 20, 18, 6, 24 }, { 25 }

code no       2:
================
1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 768
and is strongly generated by the following 6 elements:
(
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
1 1 0 0 1 0 
0 0 0 0 0 1 
, 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
1 1 0 1 0 0 
1 1 0 0 1 0 
1 1 0 0 0 1 
, 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 1 1 1 0 0 
0 1 1 0 1 0 
0 1 1 0 0 1 
, 
1 0 0 0 0 0 
0 1 0 0 0 0 
1 1 1 0 0 0 
0 0 0 1 0 0 
1 1 0 0 1 0 
1 1 0 0 0 1 
, 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 0 1 0 0 
1 1 1 0 0 0 
1 1 0 0 1 0 
1 1 0 0 0 1 
, 
1 0 1 0 1 0 
0 1 1 0 1 0 
0 0 0 0 1 0 
0 0 1 1 1 0 
0 0 1 0 0 0 
0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(5, 11)(12, 13)(14, 15)(16, 17)(24, 25), 
(4, 8)(5, 11)(6, 18)(9, 10)(12, 13)(19, 20), 
(4, 10)(5, 13)(6, 20)(8, 9)(11, 12)(18, 19), 
(3, 7)(5, 11)(6, 18)(9, 10)(14, 15)(21, 22), 
(3, 8, 7, 4)(5, 11)(6, 18)(9, 10)(12, 14, 13, 15)(19, 21, 20, 22), 
(1, 12)(2, 13)(3, 5)(4, 16)(7, 11)(8, 17)(9, 14)(10, 15)
orbits: { 1, 12, 13, 11, 15, 5, 14, 2, 7, 10, 3, 9, 8, 4, 17, 16 }, { 6, 18, 20, 19, 21, 22 }, { 23 }, { 24, 25 }

code no       3:
================
1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 1152
and is strongly generated by the following 7 elements:
(
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
1 1 0 0 1 0 
1 1 0 0 0 1 
, 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
1 0 1 1 0 0 
1 1 0 0 1 0 
0 1 1 0 0 1 
, 
1 0 0 0 0 0 
0 1 0 0 0 0 
1 0 1 1 0 0 
0 0 1 0 0 0 
0 0 0 0 1 0 
1 0 1 0 0 1 
, 
1 0 0 0 0 0 
0 0 1 0 0 0 
0 1 0 0 0 0 
1 1 0 0 1 0 
1 0 1 1 0 0 
0 1 1 0 0 1 
, 
1 1 1 1 1 0 
0 0 1 1 1 0 
0 1 0 1 1 0 
0 1 1 0 1 0 
1 0 1 1 0 0 
1 1 0 0 0 1 
, 
0 1 0 1 1 0 
1 0 0 1 1 0 
1 1 1 1 1 0 
0 1 1 0 1 0 
0 0 0 1 0 0 
0 1 1 0 0 1 
, 
0 0 0 1 0 0 
1 1 0 1 0 0 
1 0 1 1 0 0 
1 0 0 0 0 0 
0 1 0 1 1 0 
1 1 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(5, 11)(6, 18)(12, 13)(14, 15)(16, 17)(19, 20)(21, 22), 
(4, 9)(5, 11)(6, 20)(8, 10)(12, 13)(14, 17)(15, 16)(18, 19)(21, 22)(23, 24), 
(3, 4, 9)(6, 21, 19)(7, 8, 10)(12, 14, 16)(13, 15, 17)(18, 22, 20)(23, 25, 24), 
(2, 3)(4, 11)(5, 9)(6, 20)(8, 13)(10, 12)(14, 17)(21, 24)(22, 23), 
(1, 16, 2, 17)(3, 14, 7, 15)(4, 12, 8, 13)(5, 10, 11, 9)(6, 18)(19, 20)(21, 22), 
(1, 16, 7, 15)(2, 17, 3, 14)(4, 5, 10, 13)(6, 20)(8, 11, 9, 12)(18, 19)(21, 22)(23, 24), 
(1, 4)(2, 8)(3, 9)(5, 15)(6, 18)(7, 10)(11, 14)(12, 17)(13, 16)(19, 20)(21, 22)
orbits: { 1, 17, 15, 4, 16, 14, 2, 12, 13, 7, 5, 9, 3, 11, 8, 10 }, { 6, 18, 20, 19, 22, 21, 23, 24, 25 }

code no       4:
================
1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 144
and is strongly generated by the following 7 elements:
(
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 0 1 
0 0 0 0 1 0 
, 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
1 0 1 1 0 0 
1 0 1 0 1 0 
1 0 1 0 0 1 
, 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 1 1 1 0 0 
0 1 1 0 1 0 
0 1 1 0 0 1 
, 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 1 1 0 1 0 
0 1 1 0 0 1 
0 1 1 1 0 0 
, 
1 0 0 0 0 0 
0 0 1 0 0 0 
0 1 0 0 0 0 
1 1 0 1 0 0 
1 1 0 0 1 0 
1 1 0 0 0 1 
, 
0 1 0 0 0 0 
1 0 0 0 0 0 
0 0 1 0 0 0 
1 0 1 1 0 0 
1 0 1 0 1 0 
1 0 1 0 0 1 
, 
0 0 1 0 0 0 
0 1 0 0 0 0 
1 0 0 0 0 0 
0 0 0 0 0 1 
0 0 0 0 1 0 
0 0 0 1 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(5, 6)(11, 17)(12, 18)(13, 19)(14, 20)(15, 21)(16, 22), 
(4, 9)(5, 12)(6, 18)(8, 10)(11, 13)(17, 19), 
(4, 10)(5, 13)(6, 19)(8, 9)(11, 12)(17, 18), 
(4, 19, 5, 10, 6, 13)(8, 18, 11, 9, 17, 12)(14, 20, 23)(15, 21, 24)(16, 22, 25), 
(2, 3)(4, 9, 10, 8)(5, 12, 13, 11)(6, 18, 19, 17)(15, 16)(21, 22)(24, 25), 
(1, 2)(4, 10, 8, 9)(5, 13, 11, 12)(6, 19, 17, 18)(14, 15)(20, 21)(23, 24), 
(1, 3)(4, 6)(8, 19)(9, 18)(10, 17)(11, 13)(14, 25)(15, 24)(16, 23)(20, 22)
orbits: { 1, 2, 3 }, { 4, 9, 10, 13, 8, 6, 11, 18, 5, 17, 19, 12 }, { 7 }, { 14, 20, 23, 15, 25, 21, 22, 24, 16 }

code no       5:
================
1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 720
and is strongly generated by the following 6 elements:
(
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 1 1 1 0 0 
0 1 1 0 1 0 
0 1 1 0 0 1 
, 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 0 1 0 0 
0 0 1 0 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 
, 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 1 1 1 0 0 
0 0 0 1 0 0 
0 1 0 1 1 0 
0 1 0 1 0 1 
, 
1 0 0 0 0 0 
0 0 1 0 0 0 
0 1 0 0 0 0 
0 0 0 0 1 0 
0 0 0 1 0 0 
0 0 0 0 0 1 
, 
1 0 0 0 0 0 
0 1 1 1 0 0 
0 1 0 1 1 0 
0 1 1 0 1 0 
0 0 1 1 1 0 
0 1 1 1 1 1 
, 
0 1 0 0 0 0 
1 1 1 0 0 0 
1 0 0 0 0 0 
0 0 0 0 1 0 
1 1 0 1 0 0 
1 1 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(4, 10)(5, 13)(6, 19)(8, 9)(11, 12)(17, 18)(24, 25), 
(3, 4)(7, 8)(12, 14)(13, 15)(18, 20)(19, 21)(23, 24), 
(3, 10)(5, 15)(6, 21)(7, 9)(11, 14)(17, 20)(23, 25), 
(2, 3)(4, 5)(8, 12)(9, 11)(10, 13)(15, 16)(17, 18)(20, 22)(21, 23), 
(2, 10)(3, 15)(4, 13)(5, 16)(6, 25)(7, 12)(8, 14)(17, 22)(19, 21)(23, 24), 
(1, 3, 7, 2)(4, 12, 8, 5)(6, 18, 19, 17)(9, 13, 10, 11)(15, 16)(20, 23, 21, 22)
orbits: { 1, 2, 3, 10, 7, 4, 15, 13, 8, 9, 12, 5, 16, 14, 11 }, { 6, 19, 21, 25, 17, 18, 23, 24, 20, 22 }