the 1 isometry classes of irreducible [30,25,3]_2 codes are:

code no       1:
================
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 322560
and is strongly generated by the following 9 elements:
(
1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 0 1 1 0 
0 0 1 0 1 
, 
1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 1 0 1 0 
0 1 0 0 1 
, 
1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
1 0 0 1 0 
1 0 0 0 1 
, 
1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 1 0 0 1 
0 1 0 1 0 
, 
1 0 0 0 0 
0 1 0 0 0 
1 1 0 0 1 
0 1 0 1 1 
1 0 1 0 1 
, 
1 0 0 0 0 
1 0 0 1 0 
1 0 0 0 1 
1 1 0 0 0 
1 0 1 0 0 
, 
0 1 0 0 0 
1 0 0 0 0 
0 0 1 0 0 
0 0 0 0 1 
1 1 0 1 0 
, 
1 1 0 1 1 
0 0 0 1 1 
0 0 1 1 1 
0 0 0 1 0 
0 1 0 0 1 
, 
1 0 1 1 1 
1 0 0 0 1 
0 1 1 0 1 
1 1 0 1 1 
0 1 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(4, 14)(5, 21)(11, 15)(12, 16)(13, 17)(18, 22)(19, 23)(20, 24), 
(4, 12)(5, 19)(11, 13)(14, 16)(15, 17)(18, 20)(21, 23)(22, 24), 
(4, 11)(5, 18)(12, 13)(14, 15)(16, 17)(19, 20)(21, 22)(23, 24), 
(4, 19)(5, 12)(11, 20)(13, 18)(14, 23)(15, 24)(16, 21)(17, 22), 
(3, 23, 20)(4, 15, 27)(5, 10, 22)(8, 24, 19)(9, 21, 18)(11, 14, 28)(12, 17, 25)(13, 16, 26), 
(2, 11)(3, 18)(4, 7)(5, 8)(9, 25)(10, 26)(14, 19)(15, 20)(16, 28)(17, 27)(23, 30)(24, 29), 
(1, 2)(4, 20, 13, 5)(6, 29)(8, 9)(11, 18, 12, 19)(14, 24, 17, 21)(15, 22, 16, 23)(25, 28), 
(1, 26, 28)(2, 27, 25)(3, 9, 29)(5, 12, 19)(6, 10, 8)(11, 18, 20)(14, 16, 21)(15, 24, 17), 
(1, 17, 29, 16, 20, 19, 30)(2, 5, 15, 14, 7, 6, 18)(3, 26, 25, 24, 13, 8, 23)(4, 27, 10, 9, 11, 22, 28)
orbits: { 1, 2, 28, 30, 11, 25, 18, 14, 16, 26, 22, 23, 19, 15, 13, 4, 20, 9, 17, 27, 5, 21, 3, 6, 12, 29, 10, 24, 8, 7 }