the 1 isometry classes of irreducible [32,26,4]_2 codes are:

code no       1:
================
1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
the automorphism group has order 319979520
and is strongly generated by the following 14 elements:
(
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
1 0 0 1 0 1 
, 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
0 0 1 1 0 1 
, 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
0 1 0 1 0 1 
, 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
1 0 0 0 1 1 
, 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 1 1 0 1 
0 0 1 1 1 0 
, 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 0 1 
0 0 0 0 1 0 
, 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
1 0 1 0 0 1 
1 0 1 0 1 0 
, 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
1 1 0 0 1 0 
1 1 0 0 0 1 
, 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 1 0 0 1 1 
0 0 0 0 0 1 
, 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 1 1 0 1 
0 0 0 1 0 0 
0 0 1 1 1 0 
, 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 1 1 0 1 0 
0 0 1 0 0 0 
0 1 0 0 1 1 
0 0 1 1 1 0 
, 
1 0 0 0 0 0 
0 1 1 1 0 0 
0 0 0 0 1 0 
0 0 0 1 1 1 
1 1 0 0 1 0 
1 1 0 1 0 0 
, 
1 0 1 1 1 1 
0 1 0 0 1 1 
1 1 1 1 1 0 
0 1 1 0 1 0 
1 1 1 0 0 0 
0 1 0 0 0 0 
, 
0 1 1 1 1 1 
0 0 1 0 1 1 
1 0 0 0 1 1 
0 0 0 1 0 0 
1 1 0 0 1 0 
0 0 1 1 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(6, 21)(18, 22)(19, 23)(20, 24)(25, 29)(26, 30)(27, 31)(28, 32), 
(6, 23)(18, 24)(19, 21)(20, 22)(25, 31)(26, 32)(27, 29)(28, 30), 
(6, 22)(18, 21)(19, 24)(20, 23)(25, 30)(26, 29)(27, 32)(28, 31), 
(6, 25)(18, 26)(19, 27)(20, 28)(21, 29)(22, 30)(23, 31)(24, 32), 
(5, 23)(6, 16)(11, 24)(12, 21)(13, 22)(14, 19)(15, 20)(17, 18), 
(5, 6)(11, 18)(12, 19)(13, 20)(14, 21)(15, 22)(16, 23)(17, 24), 
(5, 19)(6, 12)(11, 20)(13, 18)(14, 23)(15, 24)(16, 21)(17, 22), 
(5, 11)(6, 18)(12, 13)(14, 15)(16, 17)(19, 20)(21, 22)(23, 24), 
(5, 26)(11, 25)(12, 28)(13, 27)(14, 30)(15, 29)(16, 32)(17, 31), 
(4, 5, 27, 23)(6, 16)(8, 11, 28, 24)(9, 12, 25, 21)(10, 13, 26, 22)(14, 19)(15, 20)(17, 18), 
(3, 4, 20, 13)(5, 10, 23, 26)(6, 16)(7, 8, 19, 12)(9, 24, 25, 11)(14, 21, 30, 28)(15, 22, 29, 27)(17, 18), 
(2, 12, 20, 10)(3, 18, 23, 24, 30, 16, 11, 5)(4, 27, 17, 7, 28, 8, 6, 29)(9, 13, 26, 21)(14, 25, 31, 22)(15, 19), 
(1, 17, 3, 24, 20, 22, 13, 4, 11, 29, 25, 31)(2, 6, 19, 12, 28, 26)(5, 7)(8, 23, 14)(9, 18, 15, 27)(10, 16, 30), 
(1, 25, 3, 28, 29, 31, 30, 7, 9, 10, 27, 2, 8, 26, 32)(5, 22, 16, 12, 23, 6, 17, 24, 15, 21, 20, 18, 19, 14, 11)
orbits: { 1, 31, 32, 27, 25, 28, 23, 17, 29, 26, 24, 16, 19, 13, 5, 4, 15, 10, 30, 6, 11, 12, 14, 20, 7, 3, 18, 8, 22, 21, 9, 2 }