the 1 isometry classes of irreducible [9,2,6]_2 codes are:

code no       1:
================
1 1 1 1 1 0 0 1 0
1 1 1 0 0 1 1 0 1
the automorphism group has order 1296
and is strongly generated by the following 9 elements:
(
1 0 0 0 0 0 0 
0 1 0 0 0 0 0 
0 0 1 0 0 0 0 
0 0 0 1 0 0 0 
0 0 0 0 1 0 0 
0 0 0 0 0 1 0 
1 1 1 0 0 1 1 
, 
1 0 0 0 0 0 0 
0 1 0 0 0 0 0 
0 0 1 0 0 0 0 
0 0 0 1 0 0 0 
0 0 0 0 1 0 0 
0 0 0 0 0 0 1 
0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 
0 1 0 0 0 0 0 
0 0 1 0 0 0 0 
0 0 0 1 0 0 0 
1 1 1 1 1 0 0 
0 0 0 0 0 1 0 
0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 
0 1 0 0 0 0 0 
0 0 1 0 0 0 0 
1 1 1 1 1 0 0 
0 0 0 0 1 0 0 
0 0 0 0 0 1 0 
0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 
0 1 0 0 0 0 0 
0 0 1 0 0 0 0 
1 1 1 0 0 1 1 
0 0 0 0 0 0 1 
0 0 0 1 0 0 0 
0 0 0 0 1 0 0 
, 
1 0 0 0 0 0 0 
0 0 1 0 0 0 0 
0 1 0 0 0 0 0 
1 1 1 1 1 0 0 
0 0 0 0 1 0 0 
0 0 0 0 0 0 1 
0 0 0 0 0 1 0 
, 
0 1 0 0 0 0 0 
1 0 0 0 0 0 0 
0 0 1 0 0 0 0 
0 0 0 1 0 0 0 
0 0 0 0 1 0 0 
0 0 0 0 0 1 0 
0 0 0 0 0 0 1 
, 
1 1 1 1 1 0 0 
0 0 0 0 1 0 0 
0 0 0 1 0 0 0 
0 1 0 0 0 0 0 
1 0 0 0 0 0 0 
0 0 0 0 0 1 0 
0 0 0 0 0 0 1 
, 
0 0 0 0 0 0 1 
1 1 1 0 0 1 1 
0 0 0 0 0 1 0 
0 0 0 0 1 0 0 
1 1 1 1 1 0 0 
0 1 0 0 0 0 0 
0 0 1 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(7, 9), 
(6, 7), 
(5, 8), 
(4, 8), 
(4, 6, 8, 9)(5, 7), 
(2, 3)(4, 8)(6, 7), 
(1, 2), 
(1, 5, 2, 4, 3, 8), 
(1, 9, 2, 6, 3, 7)(4, 8, 5)
orbits: { 1, 2, 8, 7, 3, 5, 9, 4, 6 }