the 1 isometry classes of irreducible [11,1,11]_3 codes are:

code no       1:
================
1 1 1 1 1 1 1 1 1 1 2
the automorphism group has order 39916800
and is strongly generated by the following 12 elements:
(
2 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 
, 
2 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 2 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 1 0 
, 
2 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 2 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 2 0 0 0 
, 
2 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 2 0 0 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
, 
2 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 0 2 
0 0 0 0 2 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 2 0 0 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
, 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 1 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 
0 1 0 0 0 0 0 0 0 0 
, 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(10, 11), 
(9, 10), 
(9, 10, 11), 
(8, 9, 10), 
(7, 9), 
(7, 10, 9, 8), 
(6, 7, 10, 9), 
(5, 9, 10, 7, 6, 8), 
(4, 7, 10, 5, 6)(8, 9), 
(3, 6, 10, 5, 9)(4, 8, 7), 
(2, 10, 3, 5)(4, 7, 8, 6), 
(1, 5, 2, 3, 4, 9, 10, 8, 7, 6)
orbits: { 1, 6, 9, 7, 5, 3, 8, 10, 11, 4, 2 }