the 1 isometry classes of irreducible [11,2,8]_3 codes are:

code no       1:
================
1 1 1 1 1 1 1 0 0 2 0
2 2 1 1 1 0 0 1 1 0 2
the automorphism group has order 2592
and is strongly generated by the following 10 elements:
(
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 
1 1 2 2 2 0 0 2 2 
, 
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 
2 2 2 2 2 2 2 0 0 
0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
2 2 2 2 2 2 2 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 
2 2 1 1 1 0 0 1 1 
0 0 0 0 0 0 0 0 2 
1 1 1 1 1 1 1 0 0 
0 0 0 0 0 0 2 0 0 
, 
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 1 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 
2 2 2 2 2 2 2 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 2 0 
, 
2 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 
2 2 1 1 1 0 0 1 1 
0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 1 0 0 
2 2 2 2 2 2 2 0 0 
0 0 0 0 2 0 0 0 0 
0 0 2 0 0 0 0 0 0 
, 
0 1 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 
2 2 2 2 2 2 2 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(9, 11), 
(8, 9), 
(7, 10)(8, 9), 
(6, 10), 
(6, 7), 
(6, 11)(7, 9)(8, 10), 
(4, 5)(6, 10)(8, 9), 
(3, 6)(4, 7)(5, 10)(8, 9), 
(3, 9, 4, 11)(5, 8)(6, 10, 7), 
(1, 2)(3, 4)(6, 10, 7)
orbits: { 1, 2 }, { 3, 6, 11, 4, 10, 7, 9, 5, 8 }