the 1 isometry classes of irreducible [12,3,8]_3 codes are:

code no       1:
================
1 1 1 1 1 1 1 0 0 2 0 0
2 2 1 1 1 0 0 1 1 0 2 0
1 0 2 1 0 2 1 2 1 0 0 2
the automorphism group has order 432
and is strongly generated by the following 6 elements:
(
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 
0 0 0 2 0 0 0 0 0 
2 2 1 1 1 0 0 1 1 
0 0 0 0 0 0 0 0 2 
1 1 1 1 1 1 1 0 0 
0 0 0 0 0 0 2 0 0 
, 
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 
2 2 2 2 2 2 2 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 2 0 
, 
2 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 
2 2 1 1 1 0 0 1 1 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 1 0 0 0 
0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 
, 
2 0 0 0 0 0 0 0 0 
1 0 2 1 0 2 1 2 1 
0 0 0 0 1 0 0 0 0 
1 1 1 1 1 1 1 0 0 
2 2 1 1 1 0 0 1 1 
0 0 0 0 0 0 1 0 0 
0 0 2 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 2 0 0 0 0 0 
, 
0 1 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
2 2 2 2 2 2 2 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 
1 1 2 2 2 0 0 2 2 
, 
2 2 1 1 1 0 0 1 1 
0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 
0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 1 0 0 
1 0 2 1 0 2 1 2 1 
)
acting on the columns of the generator matrix as follows (in order):
(4, 5)(6, 11)(7, 9)(8, 10), 
(3, 6)(4, 7)(5, 10)(8, 9), 
(3, 8)(4, 9)(5, 11)(6, 7), 
(2, 12)(3, 7, 6, 8, 11, 5)(4, 9, 10), 
(1, 2)(3, 4)(6, 10)(9, 11), 
(1, 10, 11)(2, 4, 3)(5, 7, 8)(6, 12, 9)
orbits: { 1, 2, 11, 12, 3, 6, 5, 8, 9, 10, 4, 7 }