the 36 isometry classes of irreducible [12,6,5]_3 codes are:

code no       1:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 1 1 1 0 0 0 2 0 0 0 0
1 2 1 0 1 0 0 0 2 0 0 0
2 2 0 1 1 0 0 0 0 2 0 0
0 1 1 2 1 0 0 0 0 0 2 0
2 0 2 2 1 0 0 0 0 0 0 2
the automorphism group has order 72
and is strongly generated by the following 4 elements:
(
2 0 0 0 0 0 
0 2 0 0 0 0 
0 0 2 0 0 0 
0 0 0 2 0 0 
0 0 0 0 2 0 
1 1 1 1 1 1 
, 
1 0 0 0 0 0 
2 1 2 0 2 0 
0 0 2 0 0 0 
2 1 1 1 0 0 
0 0 0 1 0 0 
0 0 0 0 0 2 
, 
1 2 2 2 0 0 
0 1 1 2 1 0 
0 0 2 0 0 0 
2 0 0 0 0 0 
2 2 0 1 1 0 
0 0 0 0 0 2 
, 
2 0 2 2 1 0 
2 1 1 1 0 0 
0 0 2 0 0 0 
0 0 0 0 2 0 
1 1 0 2 2 0 
0 0 0 0 0 2 
)
acting on the columns of the generator matrix as follows (in order):
(6, 7), 
(2, 12, 10, 9)(4, 5, 11, 8), 
(1, 4, 9, 8)(2, 10, 5, 11), 
(1, 9, 12)(2, 11, 8)(4, 10, 5)
orbits: { 1, 8, 12, 11, 9, 2, 5, 10, 4 }, { 3 }, { 6, 7 }

code no       2:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 1 1 1 0 0 0 2 0 0 0 0
1 2 1 0 1 0 0 0 2 0 0 0
2 2 0 1 1 0 0 0 0 2 0 0
0 1 1 2 1 0 0 0 0 0 2 0
2 1 0 2 0 1 0 0 0 0 0 2
the automorphism group has order 4
and is strongly generated by the following 2 elements:
(
1 0 0 0 0 0 
0 0 0 0 2 0 
0 0 1 0 0 0 
1 1 0 2 2 0 
0 2 0 0 0 0 
2 1 0 2 0 1 
, 
2 1 2 0 2 0 
0 0 0 0 2 0 
0 0 1 0 0 0 
2 1 1 1 0 0 
0 2 0 0 0 0 
0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(2, 5)(4, 10)(6, 12)(8, 11), 
(1, 9)(2, 5)(4, 8)(10, 11)
orbits: { 1, 9 }, { 2, 5 }, { 3 }, { 4, 10, 8, 11 }, { 6, 12 }, { 7 }

code no       3:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 1 1 1 0 0 0 2 0 0 0 0
1 2 1 0 1 0 0 0 2 0 0 0
2 2 0 1 1 0 0 0 0 2 0 0
0 1 1 2 1 0 0 0 0 0 2 0
0 2 1 2 0 1 0 0 0 0 0 2
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
1 2 1 0 1 0 
0 0 0 0 1 0 
0 0 2 0 0 0 
1 2 2 2 0 0 
0 1 0 0 0 0 
1 1 1 1 1 1 
)
acting on the columns of the generator matrix as follows (in order):
(1, 9)(2, 5)(4, 8)(6, 7)(10, 11)
orbits: { 1, 9 }, { 2, 5 }, { 3 }, { 4, 8 }, { 6, 7 }, { 10, 11 }, { 12 }

code no       4:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 1 1 1 0 0 0 2 0 0 0 0
1 2 1 0 1 0 0 0 2 0 0 0
2 2 0 1 1 0 0 0 0 2 0 0
0 1 2 1 0 1 0 0 0 0 2 0
0 1 0 2 1 1 0 0 0 0 0 2
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
2 1 1 1 0 0 
0 0 0 1 0 0 
0 0 1 0 0 0 
0 1 0 0 0 0 
1 2 1 0 1 0 
0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(1, 8)(2, 4)(5, 9)(7, 12)
orbits: { 1, 8 }, { 2, 4 }, { 3 }, { 5, 9 }, { 6 }, { 7, 12 }, { 10 }, { 11 }

code no       5:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 1 1 1 0 0 0 2 0 0 0 0
1 2 1 0 1 0 0 0 2 0 0 0
2 2 0 1 1 0 0 0 0 2 0 0
0 1 2 1 0 1 0 0 0 0 2 0
2 2 1 2 1 1 0 0 0 0 0 2
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
0 0 0 0 1 0 
0 2 1 2 0 2 
0 0 2 0 0 0 
2 2 1 2 1 1 
1 0 0 0 0 0 
1 1 0 2 2 0 
)
acting on the columns of the generator matrix as follows (in order):
(1, 5)(2, 11)(4, 12)(6, 10)(7, 9)
orbits: { 1, 5 }, { 2, 11 }, { 3 }, { 4, 12 }, { 6, 10 }, { 7, 9 }, { 8 }

code no       6:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 1 1 1 0 0 0 2 0 0 0 0
1 2 1 0 1 0 0 0 2 0 0 0
2 2 0 1 1 0 0 0 0 2 0 0
2 2 2 1 0 1 0 0 0 0 2 0
2 1 0 2 0 1 0 0 0 0 0 2
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
2 0 0 0 0 0 
1 1 0 2 2 0 
2 1 2 0 2 0 
0 0 0 0 2 0 
0 0 0 2 0 0 
0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(2, 10)(3, 9)(4, 5)(7, 11)
orbits: { 1 }, { 2, 10 }, { 3, 9 }, { 4, 5 }, { 6 }, { 7, 11 }, { 8 }, { 12 }

code no       7:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 1 1 1 0 0 0 2 0 0 0 0
1 2 1 0 1 0 0 0 2 0 0 0
2 2 0 1 1 0 0 0 0 2 0 0
2 2 2 1 0 1 0 0 0 0 2 0
0 1 2 2 0 1 0 0 0 0 0 2
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
1 0 0 0 0 0 
0 0 0 1 0 0 
1 2 2 2 0 0 
0 1 0 0 0 0 
1 1 1 2 0 2 
2 1 2 0 2 0 
)
acting on the columns of the generator matrix as follows (in order):
(2, 4)(3, 8)(5, 11)(6, 9)(10, 12)
orbits: { 1 }, { 2, 4 }, { 3, 8 }, { 5, 11 }, { 6, 9 }, { 7 }, { 10, 12 }

code no       8:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 1 1 1 0 0 0 2 0 0 0 0
1 2 1 0 1 0 0 0 2 0 0 0
2 2 0 1 1 0 0 0 0 2 0 0
2 1 0 2 0 1 0 0 0 0 2 0
0 2 1 2 0 1 0 0 0 0 0 2
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
1 2 2 2 0 0 
2 1 2 0 2 0 
1 1 0 2 2 0 
0 0 0 0 2 0 
0 0 0 2 0 0 
2 1 0 2 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(1, 8)(2, 9)(3, 10)(4, 5)(6, 11)(7, 12)
orbits: { 1, 8 }, { 2, 9 }, { 3, 10 }, { 4, 5 }, { 6, 11 }, { 7, 12 }

code no       9:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 1 1 1 0 0 0 2 0 0 0 0
1 2 1 0 1 0 0 0 2 0 0 0
2 2 0 1 1 0 0 0 0 2 0 0
2 1 0 2 0 1 0 0 0 0 2 0
1 2 0 2 1 1 0 0 0 0 0 2
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
2 2 0 1 1 0 
0 1 0 0 0 0 
1 2 0 2 1 1 
0 0 0 1 0 0 
0 0 0 0 1 0 
1 2 1 0 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(1, 10)(3, 12)(6, 9)(8, 11)
orbits: { 1, 10 }, { 2 }, { 3, 12 }, { 4 }, { 5 }, { 6, 9 }, { 7 }, { 8, 11 }

code no      10:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 1 1 1 0 0 0 2 0 0 0 0
1 2 1 0 1 0 0 0 2 0 0 0
2 2 0 1 1 0 0 0 0 2 0 0
2 1 0 2 0 1 0 0 0 0 2 0
1 0 2 2 1 1 0 0 0 0 0 2
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }

code no      11:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 1 1 1 0 0 0 2 0 0 0 0
1 2 1 0 1 0 0 0 2 0 0 0
2 2 0 1 1 0 0 0 0 2 0 0
2 1 0 2 0 1 0 0 0 0 2 0
1 2 0 0 2 1 0 0 0 0 0 2
the automorphism group has order 8
and is strongly generated by the following 3 elements:
(
1 0 0 0 0 0 
1 2 0 1 0 2 
2 2 2 2 2 2 
0 0 0 0 0 2 
2 2 0 1 1 0 
0 0 0 2 0 0 
, 
1 2 0 0 2 1 
0 2 0 0 0 0 
1 1 1 1 1 1 
1 1 0 2 2 0 
0 0 0 0 0 1 
0 0 0 0 1 0 
, 
0 1 0 0 0 0 
1 0 0 0 0 0 
0 0 1 0 0 0 
0 0 0 0 1 0 
0 0 0 1 0 0 
0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(2, 11)(3, 7)(4, 6)(5, 10)(8, 9), 
(1, 12)(3, 7)(4, 10)(5, 6)(8, 9), 
(1, 2)(4, 5)(8, 9)(11, 12)
orbits: { 1, 12, 2, 11 }, { 3, 7 }, { 4, 6, 10, 5 }, { 8, 9 }

code no      12:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 1 1 1 0 0 0 2 0 0 0 0
1 2 1 0 1 0 0 0 2 0 0 0
2 2 0 1 1 0 0 0 0 2 0 0
2 1 0 2 0 1 0 0 0 0 2 0
2 2 0 0 2 1 0 0 0 0 0 2
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
1 0 0 0 0 0 
1 2 0 1 0 2 
2 2 2 2 2 2 
0 0 0 0 0 2 
2 2 0 1 1 0 
0 0 0 2 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(2, 11)(3, 7)(4, 6)(5, 10)(8, 9)
orbits: { 1 }, { 2, 11 }, { 3, 7 }, { 4, 6 }, { 5, 10 }, { 8, 9 }, { 12 }

code no      13:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 1 1 1 0 0 0 2 0 0 0 0
1 2 1 0 1 0 0 0 2 0 0 0
2 2 0 1 1 0 0 0 0 2 0 0
2 1 0 2 0 1 0 0 0 0 2 0
1 0 1 0 2 1 0 0 0 0 0 2
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }

code no      14:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 1 1 1 0 0 0 2 0 0 0 0
1 2 1 0 1 0 0 0 2 0 0 0
2 2 0 1 1 0 0 0 0 2 0 0
2 1 0 2 0 1 0 0 0 0 2 0
2 2 1 1 2 1 0 0 0 0 0 2
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
1 0 0 0 0 0 
1 2 0 1 0 2 
2 2 2 2 2 2 
0 0 0 0 0 2 
2 2 0 1 1 0 
0 0 0 2 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(2, 11)(3, 7)(4, 6)(5, 10)(8, 9)
orbits: { 1 }, { 2, 11 }, { 3, 7 }, { 4, 6 }, { 5, 10 }, { 8, 9 }, { 12 }

code no      15:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 1 1 1 0 0 0 2 0 0 0 0
1 2 1 0 1 0 0 0 2 0 0 0
2 2 0 1 1 0 0 0 0 2 0 0
2 2 0 2 0 1 0 0 0 0 2 0
1 0 0 2 1 1 0 0 0 0 0 2
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }

code no      16:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 1 1 1 0 0 0 2 0 0 0 0
1 2 1 0 1 0 0 0 2 0 0 0
2 2 0 1 1 0 0 0 0 2 0 0
2 2 0 2 0 1 0 0 0 0 2 0
0 1 2 2 2 1 0 0 0 0 0 2
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
0 0 0 1 0 0 
0 1 0 0 0 0 
2 2 0 1 1 0 
1 0 0 0 0 0 
2 1 1 1 0 0 
1 1 0 1 0 2 
)
acting on the columns of the generator matrix as follows (in order):
(1, 4)(3, 10)(5, 8)(6, 11)(7, 12)
orbits: { 1, 4 }, { 2 }, { 3, 10 }, { 5, 8 }, { 6, 11 }, { 7, 12 }, { 9 }

code no      17:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 1 1 1 0 0 0 2 0 0 0 0
1 2 1 0 1 0 0 0 2 0 0 0
2 2 0 1 1 0 0 0 0 2 0 0
1 0 1 2 0 1 0 0 0 0 2 0
2 1 2 2 0 1 0 0 0 0 0 2
the automorphism group has order 16
and is strongly generated by the following 4 elements:
(
1 0 0 0 0 0 
0 0 0 0 1 0 
2 2 0 1 1 0 
1 2 1 0 1 0 
0 1 0 0 0 0 
0 0 0 0 0 2 
, 
2 1 1 1 0 0 
0 0 0 1 0 0 
0 0 1 0 0 0 
0 1 0 0 0 0 
1 2 1 0 1 0 
1 0 1 2 0 1 
, 
0 0 0 0 1 0 
0 0 0 0 0 2 
2 2 2 2 2 2 
2 0 2 1 0 2 
2 1 1 1 0 0 
0 0 0 2 0 0 
, 
1 0 1 2 0 1 
0 1 0 0 0 0 
1 2 1 1 0 2 
0 0 0 1 0 0 
0 0 0 0 2 0 
2 1 1 1 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(2, 5)(3, 10)(4, 9)(7, 12), 
(1, 8)(2, 4)(5, 9)(6, 11), 
(1, 9, 8, 5)(2, 11, 4, 6)(3, 7), 
(1, 11)(3, 12)(6, 8)(7, 10)
orbits: { 1, 8, 5, 11, 9, 6, 2, 4 }, { 3, 10, 7, 12 }

code no      18:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 1 1 1 0 0 0 2 0 0 0 0
1 2 1 0 1 0 0 0 2 0 0 0
2 2 0 1 1 0 0 0 0 2 0 0
1 0 1 2 0 1 0 0 0 0 2 0
0 1 1 0 2 1 0 0 0 0 0 2
the automorphism group has order 36
and is strongly generated by the following 2 elements:
(
2 0 0 0 0 0 
0 1 1 0 2 1 
1 1 1 1 1 1 
1 0 1 2 0 1 
0 0 0 2 0 0 
2 1 1 1 0 0 
, 
0 0 0 0 1 0 
0 0 0 0 0 2 
2 2 2 2 2 2 
2 0 2 1 0 2 
2 1 1 1 0 0 
0 0 0 2 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(2, 8, 6, 12)(3, 7)(4, 5, 9, 11), 
(1, 9, 8, 5)(2, 11, 4, 6)(3, 7)
orbits: { 1, 5, 4, 8, 11, 2, 9, 12, 6 }, { 3, 7 }, { 10 }

code no      19:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 1 1 1 0 0 0 2 0 0 0 0
1 2 1 0 1 0 0 0 2 0 0 0
2 2 0 1 1 0 0 0 0 2 0 0
0 1 1 2 0 1 0 0 0 0 2 0
1 2 2 0 2 1 0 0 0 0 0 2
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
2 1 1 1 0 0 
0 0 1 0 0 0 
0 1 0 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
0 2 2 1 0 2 
)
acting on the columns of the generator matrix as follows (in order):
(1, 8)(2, 3)(6, 11)(7, 12)(9, 10)
orbits: { 1, 8 }, { 2, 3 }, { 4 }, { 5 }, { 6, 11 }, { 7, 12 }, { 9, 10 }

code no      20:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 1 1 1 0 0 0 2 0 0 0 0
1 2 1 0 1 0 0 0 2 0 0 0
2 2 0 1 1 0 0 0 0 2 0 0
0 1 1 2 0 1 0 0 0 0 2 0
2 1 0 1 2 1 0 0 0 0 0 2
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }

code no      21:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 1 1 1 0 0 0 2 0 0 0 0
1 2 1 0 1 0 0 0 2 0 0 0
2 2 1 0 0 1 0 0 0 2 0 0
2 1 2 2 0 1 0 0 0 0 2 0
1 2 2 0 2 1 0 0 0 0 0 2
the automorphism group has order 18
and is strongly generated by the following 4 elements:
(
1 0 0 0 0 0 
2 2 1 0 0 1 
0 0 1 0 0 0 
2 1 1 0 1 2 
2 1 1 1 0 0 
0 0 0 0 0 1 
, 
0 0 0 2 0 0 
1 2 2 2 0 0 
0 0 1 0 0 0 
2 0 0 0 0 0 
1 2 1 0 1 0 
0 0 0 0 0 1 
, 
1 2 2 0 2 1 
2 1 2 0 2 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
1 1 2 0 0 2 
0 0 0 0 0 1 
, 
2 1 2 2 0 1 
1 2 2 2 0 0 
0 0 1 0 0 0 
0 0 0 0 1 0 
1 1 2 0 0 2 
0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(2, 10)(4, 12)(5, 8)(9, 11), 
(1, 4)(2, 8)(5, 9)(10, 11), 
(1, 12)(2, 9)(5, 10)(8, 11), 
(1, 9, 11)(2, 12, 8)(4, 10, 5)
orbits: { 1, 4, 12, 11, 5, 2, 9, 10, 8 }, { 3 }, { 6 }, { 7 }

code no      22:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 1 1 1 0 0 0 2 0 0 0 0
1 2 1 0 1 0 0 0 2 0 0 0
2 2 1 0 0 1 0 0 0 2 0 0
1 0 0 2 1 1 0 0 0 0 2 0
0 2 0 2 2 1 0 0 0 0 0 2
the automorphism group has order 5
and is strongly generated by the following 1 elements:
(
2 2 2 2 2 2 
2 0 0 1 2 2 
0 0 0 2 0 0 
2 0 0 0 0 0 
0 0 1 0 0 0 
0 1 0 1 1 2 
)
acting on the columns of the generator matrix as follows (in order):
(1, 4, 3, 5, 7)(2, 9, 12, 6, 11)
orbits: { 1, 7, 5, 3, 4 }, { 2, 11, 6, 12, 9 }, { 8 }, { 10 }

code no      23:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 1 1 1 0 0 0 2 0 0 0 0
1 2 1 0 1 0 0 0 2 0 0 0
2 2 1 0 0 1 0 0 0 2 0 0
1 2 0 2 1 1 0 0 0 0 2 0
1 0 2 2 2 1 0 0 0 0 0 2
the automorphism group has order 3
and is strongly generated by the following 1 elements:
(
1 2 1 0 1 0 
2 2 1 0 0 1 
0 0 0 0 0 1 
1 2 2 2 0 0 
1 0 0 0 0 0 
1 0 2 2 2 1 
)
acting on the columns of the generator matrix as follows (in order):
(1, 5, 9)(2, 11, 10)(3, 12, 6)(4, 7, 8)
orbits: { 1, 9, 5 }, { 2, 10, 11 }, { 3, 6, 12 }, { 4, 8, 7 }

code no      24:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 1 1 1 0 0 0 2 0 0 0 0
1 2 1 0 1 0 0 0 2 0 0 0
2 2 1 0 0 1 0 0 0 2 0 0
1 2 0 2 1 1 0 0 0 0 2 0
0 1 2 2 2 1 0 0 0 0 0 2
the automorphism group has order 6
and is strongly generated by the following 2 elements:
(
1 1 2 0 0 2 
1 2 2 2 0 0 
0 0 0 0 0 1 
1 1 1 1 1 1 
0 0 0 2 0 0 
0 2 1 1 1 2 
, 
2 2 2 2 2 2 
0 1 2 2 2 1 
0 2 0 0 0 0 
2 2 1 0 0 1 
1 0 0 0 0 0 
2 1 1 1 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(1, 11, 10)(2, 9, 8)(3, 12, 6)(4, 5, 7), 
(1, 5, 10, 4, 11, 7)(2, 3, 8, 6, 9, 12)
orbits: { 1, 10, 7, 11, 5, 4 }, { 2, 8, 12, 9, 3, 6 }

code no      25:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 1 1 1 0 0 0 2 0 0 0 0
1 2 1 0 1 0 0 0 2 0 0 0
2 2 1 0 0 1 0 0 0 2 0 0
1 2 0 2 1 1 0 0 0 0 2 0
1 1 2 2 2 1 0 0 0 0 0 2
the automorphism group has order 8
and is strongly generated by the following 2 elements:
(
2 1 2 0 2 0 
0 0 0 1 0 0 
0 0 0 0 0 1 
0 2 0 0 0 0 
2 2 1 1 1 2 
0 0 2 0 0 0 
, 
2 2 1 1 1 2 
2 2 2 2 2 2 
0 0 1 0 0 0 
1 2 2 2 0 0 
0 0 0 1 0 0 
0 0 0 0 0 2 
)
acting on the columns of the generator matrix as follows (in order):
(1, 9)(2, 4)(3, 6)(5, 12)(7, 8)(10, 11), 
(1, 7, 2, 12)(4, 5, 9, 8)
orbits: { 1, 9, 12, 5, 2, 4, 7, 8 }, { 3, 6 }, { 10, 11 }

code no      26:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 1 1 1 0 0 0 2 0 0 0 0
1 2 1 0 1 0 0 0 2 0 0 0
2 2 1 0 0 1 0 0 0 2 0 0
1 0 2 2 1 1 0 0 0 0 2 0
0 2 2 1 2 1 0 0 0 0 0 2
the automorphism group has order 6
and is strongly generated by the following 2 elements:
(
0 0 0 2 0 0 
1 1 1 1 1 1 
0 2 2 1 2 1 
2 0 0 0 0 0 
2 2 1 0 0 1 
1 2 2 2 0 0 
, 
0 0 0 0 2 0 
2 1 1 1 0 0 
0 0 0 1 0 0 
2 2 1 0 0 1 
0 2 2 1 2 1 
2 1 2 0 2 0 
)
acting on the columns of the generator matrix as follows (in order):
(1, 4)(2, 7)(3, 12)(5, 10)(6, 8)(9, 11), 
(1, 12, 5)(2, 11, 8)(3, 10, 4)(6, 7, 9)
orbits: { 1, 4, 5, 10, 12, 3 }, { 2, 7, 8, 6, 11, 9 }

code no      27:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 1 1 1 0 0 0 2 0 0 0 0
1 2 1 0 1 0 0 0 2 0 0 0
2 2 1 0 0 1 0 0 0 2 0 0
2 0 2 2 1 1 0 0 0 0 2 0
1 2 2 1 2 1 0 0 0 0 0 2
the automorphism group has order 10
and is strongly generated by the following 3 elements:
(
2 0 0 0 0 0 
0 0 0 0 0 1 
2 2 1 0 0 1 
1 0 1 1 2 2 
2 1 2 0 2 0 
0 1 0 0 0 0 
, 
0 0 0 1 0 0 
2 1 1 1 0 0 
0 0 2 0 0 0 
1 0 0 0 0 0 
2 1 2 0 2 0 
1 1 1 1 1 1 
, 
1 1 2 0 0 2 
1 2 2 1 2 1 
1 0 1 1 2 2 
0 0 0 2 0 0 
2 1 2 0 2 0 
0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(2, 6)(3, 10)(4, 11)(5, 9)(8, 12), 
(1, 4)(2, 8)(5, 9)(6, 7)(10, 11), 
(1, 10)(2, 12)(3, 11)(5, 9)(7, 8)
orbits: { 1, 4, 10, 11, 3 }, { 2, 6, 8, 12, 7 }, { 5, 9 }

code no      28:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 1 1 1 0 0 0 2 0 0 0 0
1 2 1 0 1 0 0 0 2 0 0 0
1 0 1 2 0 1 0 0 0 2 0 0
0 1 1 0 2 1 0 0 0 0 2 0
0 0 2 2 2 1 0 0 0 0 0 2
the automorphism group has order 1440
and is strongly generated by the following 7 elements:
(
2 0 0 0 0 0 
0 2 0 0 0 0 
0 0 2 0 0 0 
0 0 0 2 0 0 
1 2 1 0 1 0 
1 0 1 2 0 1 
, 
2 0 0 0 0 0 
0 2 0 0 0 0 
0 0 1 0 0 0 
2 1 2 0 2 0 
1 2 2 2 0 0 
0 0 0 0 0 2 
, 
2 0 0 0 0 0 
0 1 0 0 0 0 
1 1 1 1 1 1 
0 1 1 0 2 1 
0 0 0 0 0 1 
0 0 0 2 0 0 
, 
1 0 0 0 0 0 
1 2 1 0 1 0 
0 0 2 0 0 0 
0 1 0 0 0 0 
0 2 2 0 1 2 
0 0 0 2 0 0 
, 
1 0 0 0 0 0 
2 1 1 1 0 0 
2 2 2 2 2 2 
0 0 0 0 1 0 
1 2 1 0 1 0 
0 1 1 0 2 1 
, 
2 1 1 1 0 0 
0 0 0 1 0 0 
0 0 1 0 0 0 
0 1 0 0 0 0 
1 2 1 0 1 0 
1 0 1 2 0 1 
, 
0 0 2 2 2 1 
2 1 1 1 0 0 
1 1 1 1 1 1 
0 0 0 0 1 0 
1 0 1 2 0 1 
2 1 2 0 2 0 
)
acting on the columns of the generator matrix as follows (in order):
(5, 9)(6, 10)(11, 12), 
(4, 9)(5, 8)(10, 11), 
(3, 7)(4, 6, 5, 10, 8, 12, 9, 11), 
(2, 4, 6, 9)(5, 8, 10, 11), 
(2, 11, 6, 8)(3, 7)(4, 10, 9, 5), 
(1, 8)(2, 4)(5, 9)(6, 10), 
(1, 11, 10, 5, 4, 9, 6, 12)(2, 8)(3, 7)
orbits: { 1, 8, 12, 5, 10, 6, 2, 11, 9, 4 }, { 3, 7 }

code no      29:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 1 1 1 0 0 0 2 0 0 0 0
2 2 1 0 1 0 0 0 2 0 0 0
2 1 2 0 0 1 0 0 0 2 0 0
1 2 0 2 1 1 0 0 0 0 2 0
1 0 2 2 2 1 0 0 0 0 0 2
the automorphism group has order 12
and is strongly generated by the following 2 elements:
(
0 2 0 0 0 0 
2 0 1 1 1 2 
0 0 0 0 0 2 
2 2 2 2 2 2 
2 2 1 0 1 0 
0 0 0 0 2 0 
, 
0 0 2 0 0 0 
0 0 0 0 0 1 
2 1 2 0 0 1 
2 0 1 1 1 2 
1 0 0 0 0 0 
2 1 1 1 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(1, 8, 10, 11, 12, 2)(3, 7, 4, 9, 5, 6), 
(1, 5, 12, 4, 10, 3)(2, 9, 11, 7, 8, 6)
orbits: { 1, 2, 3, 12, 6, 10, 11, 5, 8, 4, 9, 7 }

code no      30:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 1 1 1 0 0 0 2 0 0 0 0
2 2 1 0 1 0 0 0 2 0 0 0
2 1 2 0 0 1 0 0 0 2 0 0
1 2 0 0 2 1 0 0 0 0 2 0
2 0 1 0 2 1 0 0 0 0 0 2
the automorphism group has order 72
and is strongly generated by the following 5 elements:
(
2 0 0 0 0 0 
2 1 2 0 0 1 
2 2 1 0 1 0 
2 2 2 2 2 2 
2 0 1 0 2 1 
2 1 0 0 1 2 
, 
1 0 0 0 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 
2 2 2 2 2 2 
0 0 1 0 0 0 
0 1 0 0 0 0 
, 
1 1 2 0 2 0 
0 0 0 0 2 0 
0 2 0 0 0 0 
0 0 0 1 0 0 
2 1 2 0 0 1 
1 0 0 0 0 0 
, 
0 1 0 0 0 0 
2 1 0 0 1 2 
0 0 0 0 0 2 
2 2 2 2 2 2 
2 2 1 0 1 0 
0 0 0 0 2 0 
, 
2 0 1 0 2 1 
1 1 2 0 2 0 
0 0 0 0 0 1 
0 0 0 1 0 0 
0 1 0 0 0 0 
1 2 1 0 0 2 
)
acting on the columns of the generator matrix as follows (in order):
(2, 9, 3, 10)(4, 7)(5, 11, 6, 12), 
(2, 6, 3, 5)(4, 7)(9, 11, 10, 12), 
(1, 6, 11, 9)(2, 3, 10, 5), 
(1, 10, 11, 2)(3, 9, 5, 6)(4, 7), 
(1, 11, 12)(2, 5, 9)(3, 10, 6)
orbits: { 1, 9, 2, 12, 11, 3, 5, 10, 6 }, { 4, 7 }, { 8 }

code no      31:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 1 1 1 0 0 0 2 0 0 0 0
2 2 1 0 1 0 0 0 2 0 0 0
2 2 2 0 0 1 0 0 0 2 0 0
1 2 0 2 1 1 0 0 0 0 2 0
2 0 1 1 2 1 0 0 0 0 0 2
the automorphism group has order 24
and is strongly generated by the following 3 elements:
(
2 0 0 0 0 0 
0 0 1 0 0 0 
0 1 0 0 0 0 
0 0 0 0 0 2 
2 2 1 0 1 0 
0 0 0 2 0 0 
, 
0 2 0 0 0 0 
2 0 0 0 0 0 
0 0 1 0 0 0 
1 2 2 2 0 0 
2 2 2 0 0 1 
2 2 1 0 1 0 
, 
1 2 2 2 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 
2 2 2 2 2 2 
0 2 0 0 0 0 
0 0 2 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(2, 3)(4, 6)(5, 9)(7, 12)(8, 10), 
(1, 2)(4, 8)(5, 10)(6, 9)(7, 11), 
(1, 8)(2, 5)(3, 6)(4, 7)(9, 12)(10, 11)
orbits: { 1, 2, 8, 3, 5, 10, 4, 6, 9, 11, 7, 12 }

code no      32:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 2 1 1 0 0 0 2 0 0 0 0
2 1 2 0 1 0 0 0 2 0 0 0
0 2 2 1 1 0 0 0 0 2 0 0
1 2 0 2 1 0 0 0 0 0 2 0
2 0 1 2 1 0 0 0 0 0 0 2
the automorphism group has order 1440
and is strongly generated by the following 7 elements:
(
2 0 0 0 0 0 
0 2 0 0 0 0 
0 0 2 0 0 0 
0 0 0 2 0 0 
0 0 0 0 2 0 
1 1 1 1 1 1 
, 
2 0 0 0 0 0 
0 1 0 0 0 0 
1 1 2 2 0 0 
1 2 0 2 1 0 
0 0 2 0 0 0 
0 0 0 0 0 1 
, 
1 0 0 0 0 0 
0 1 0 0 0 0 
2 0 1 2 1 0 
0 0 2 0 0 0 
2 1 2 0 1 0 
1 1 1 1 1 1 
, 
2 0 0 0 0 0 
0 0 1 0 0 0 
0 0 0 2 0 0 
2 2 1 1 0 0 
0 2 2 1 1 0 
2 2 2 2 2 2 
, 
1 0 0 0 0 0 
1 2 0 2 1 0 
2 1 2 0 1 0 
0 1 1 2 2 0 
0 0 1 0 0 0 
2 2 2 2 2 2 
, 
1 1 2 2 0 0 
2 0 0 0 0 0 
0 0 0 0 1 0 
0 0 1 0 0 0 
2 1 2 0 1 0 
1 1 1 1 1 1 
, 
2 0 1 2 1 0 
0 1 0 0 0 0 
1 2 1 0 2 0 
0 0 0 0 1 0 
1 1 2 2 0 0 
0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(6, 7), 
(3, 5, 10, 8)(4, 9, 12, 11), 
(3, 4, 10, 12)(5, 11, 8, 9)(6, 7), 
(2, 8, 4, 3)(5, 11, 9, 10)(6, 7), 
(2, 10, 4, 11)(3, 5, 8, 9)(6, 7), 
(1, 2, 10, 8)(3, 4, 9, 5)(6, 7), 
(1, 9, 3, 12)(4, 11, 8, 5)
orbits: { 1, 8, 12, 10, 11, 2, 5, 9, 3, 4 }, { 6, 7 }

code no      33:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 2 1 1 0 0 0 2 0 0 0 0
2 1 2 0 1 0 0 0 2 0 0 0
0 2 2 1 1 0 0 0 0 2 0 0
1 2 0 2 1 0 0 0 0 0 2 0
2 1 0 2 0 1 0 0 0 0 0 2
the automorphism group has order 72
and is strongly generated by the following 4 elements:
(
2 0 0 0 0 0 
0 2 0 0 0 0 
2 2 1 1 0 0 
0 0 0 2 0 0 
1 2 0 2 1 0 
2 1 0 2 0 1 
, 
1 0 0 0 0 0 
0 0 0 2 0 0 
1 1 2 2 0 0 
0 2 0 0 0 0 
2 1 2 0 1 0 
0 0 0 0 0 1 
, 
1 0 0 0 0 0 
2 2 1 1 0 0 
0 2 0 0 0 0 
0 0 1 0 0 0 
2 1 0 1 2 0 
0 0 0 0 0 2 
, 
2 2 1 1 0 0 
1 0 0 0 0 0 
0 0 0 0 2 0 
0 0 2 0 0 0 
1 2 1 0 2 0 
0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(3, 8)(5, 11)(6, 12)(9, 10), 
(2, 4)(3, 8)(5, 9)(10, 11), 
(2, 3, 4, 8)(5, 10, 9, 11), 
(1, 2, 10, 8)(3, 4, 9, 5)
orbits: { 1, 8, 3, 4, 10, 2, 5, 9, 11 }, { 6, 12 }, { 7 }

code no      34:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 2 1 1 0 0 0 2 0 0 0 0
2 1 2 0 1 0 0 0 2 0 0 0
0 2 2 1 1 0 0 0 0 2 0 0
2 1 0 2 0 1 0 0 0 0 2 0
0 2 1 2 0 1 0 0 0 0 0 2
the automorphism group has order 36
and is strongly generated by the following 5 elements:
(
2 0 0 0 0 0 
0 2 0 0 0 0 
0 0 0 2 0 0 
0 0 2 0 0 0 
0 0 0 0 0 2 
0 0 0 0 2 0 
, 
2 0 0 0 0 0 
1 1 2 2 0 0 
0 0 0 2 0 0 
0 0 2 0 0 0 
1 2 1 0 2 0 
1 2 0 1 0 2 
, 
0 1 1 2 2 0 
2 2 1 1 0 0 
2 1 2 0 1 0 
0 0 0 0 1 0 
0 0 0 1 0 0 
0 0 0 0 0 1 
, 
0 2 1 2 0 1 
0 2 0 0 0 0 
0 0 0 0 0 2 
1 2 0 1 0 2 
0 0 0 2 0 0 
1 2 1 0 2 0 
, 
0 0 2 0 0 0 
0 1 0 0 0 0 
2 0 0 0 0 0 
0 0 0 1 0 0 
2 1 0 2 0 1 
0 2 2 1 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(3, 4)(5, 6)(9, 11)(10, 12), 
(2, 8)(3, 4)(5, 9)(6, 11), 
(1, 10)(2, 8)(3, 9)(4, 5), 
(1, 10, 12)(3, 9, 6)(4, 5, 11), 
(1, 3)(5, 11)(6, 10)(9, 12)
orbits: { 1, 10, 12, 3, 6, 9, 4, 5, 11 }, { 2, 8 }, { 7 }

code no      35:
================
1 1 1 1 1 1 2 0 0 0 0 0
2 2 1 1 0 0 0 2 0 0 0 0
2 1 2 0 1 0 0 0 2 0 0 0
2 1 0 2 0 1 0 0 0 2 0 0
2 0 1 0 2 1 0 0 0 0 2 0
1 0 0 2 2 1 0 0 0 0 0 2
the automorphism group has order 360
and is strongly generated by the following 5 elements:
(
1 0 0 0 0 0 
0 2 0 0 0 0 
0 0 2 0 0 0 
0 0 0 0 1 0 
1 1 2 2 0 0 
2 1 0 2 0 1 
, 
1 0 0 0 0 0 
0 2 0 0 0 0 
0 0 0 2 0 0 
0 0 0 0 0 1 
1 1 2 2 0 0 
2 1 2 0 1 0 
, 
1 0 0 0 0 0 
0 2 0 0 0 0 
0 0 0 0 1 0 
1 2 1 0 2 0 
2 0 0 1 1 2 
0 0 0 0 0 2 
, 
1 0 0 0 0 0 
0 0 0 2 0 0 
0 2 0 0 0 0 
1 1 2 2 0 0 
0 0 0 0 0 1 
2 1 2 0 1 0 
, 
2 0 0 0 0 0 
2 0 0 1 1 2 
0 0 0 0 0 2 
2 2 1 1 0 0 
0 0 0 0 2 0 
2 0 1 0 2 1 
)
acting on the columns of the generator matrix as follows (in order):
(4, 9, 8, 5)(6, 11, 12, 10), 
(3, 9, 6, 4)(5, 11, 10, 8), 
(3, 8, 12, 5)(4, 11, 10, 9), 
(2, 3, 8, 4)(5, 10, 9, 6), 
(2, 10, 12)(3, 11, 6)(4, 9, 8)
orbits: { 1 }, { 2, 4, 12, 5, 6, 9, 8, 11, 10, 3 }, { 7 }

code no      36:
================
1 1 1 1 0 0 2 0 0 0 0 0
2 1 1 0 1 0 0 2 0 0 0 0
1 2 0 1 1 0 0 0 2 0 0 0
1 2 1 0 0 1 0 0 0 2 0 0
2 1 0 1 0 1 0 0 0 0 2 0
1 1 0 0 1 1 0 0 0 0 0 2
the automorphism group has order 432
and is strongly generated by the following 8 elements:
(
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 0 1 0 0 
0 0 1 0 0 0 
0 0 0 0 0 1 
0 0 0 0 1 0 
, 
2 0 0 0 0 0 
0 2 0 0 0 0 
0 0 0 0 0 2 
0 0 0 0 2 0 
0 0 0 2 0 0 
0 0 2 0 0 0 
, 
1 0 0 0 0 0 
2 2 2 2 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
2 1 0 1 0 1 
2 1 1 0 1 0 
, 
2 0 0 0 0 0 
0 0 0 0 1 0 
2 2 0 0 2 2 
0 0 0 2 0 0 
0 1 0 0 0 0 
1 2 2 0 2 0 
, 
2 0 0 0 0 0 
1 1 0 0 1 1 
0 0 0 0 2 0 
0 0 0 0 0 2 
1 2 0 2 0 2 
1 2 2 0 2 0 
, 
2 1 0 2 2 0 
1 2 2 0 2 0 
0 0 0 1 0 0 
0 0 1 0 0 0 
1 1 1 1 0 0 
0 0 0 0 0 1 
, 
2 1 0 1 0 1 
1 2 1 0 0 1 
0 0 0 2 0 0 
0 0 2 0 0 0 
2 2 2 2 0 0 
0 0 0 0 2 0 
, 
2 2 0 0 2 2 
1 2 0 2 0 2 
0 0 0 0 1 0 
1 1 1 1 0 0 
1 2 0 1 1 0 
2 0 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(3, 4)(5, 6)(8, 11)(9, 10), 
(3, 6)(4, 5)(7, 12)(8, 11), 
(2, 7)(5, 11)(6, 8)(9, 10), 
(2, 5)(3, 12)(6, 8)(7, 11), 
(2, 7, 12)(3, 11, 5)(4, 8, 6), 
(1, 9)(2, 8)(3, 4)(5, 7), 
(1, 8, 10, 2, 9, 11)(3, 4)(5, 6, 7), 
(1, 6, 12)(2, 8, 11)(3, 9, 5)(4, 10, 7)
orbits: { 1, 9, 11, 12, 10, 2, 3, 8, 5, 7, 6, 4 }