the 6 isometry classes of irreducible [13,2,8]_3 codes are:

code no       1:
================
1 1 1 1 1 1 1 1 1 1 1 2 0
2 2 1 1 1 1 1 0 0 0 0 0 2
the automorphism group has order 57600
and is strongly generated by the following 9 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 2 0 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 1 0 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 0 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
, 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(10, 11), 
(9, 11, 10, 12), 
(8, 10)(9, 12), 
(6, 7)(9, 11, 12, 10), 
(5, 7, 6)(8, 10)(9, 12), 
(4, 7)(5, 6)(9, 11), 
(3, 10, 6, 9, 4, 11, 7, 8)(5, 12), 
(1, 2)(3, 5)(6, 7)(8, 9, 12)
orbits: { 1, 2 }, { 3, 8, 5, 10, 7, 12, 6, 11, 4, 9 }, { 13 }

code no       2:
================
1 1 1 1 1 1 1 1 1 1 1 2 0
2 2 2 1 1 1 1 0 0 0 0 0 2
the automorphism group has order 17280
and is strongly generated by the following 12 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 2 0 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 2 0 0 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 1 0 0 
, 
0 0 1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(10, 11, 12), 
(9, 11), 
(8, 11, 10), 
(8, 12, 9), 
(6, 7)(9, 11)(10, 12), 
(5, 6)(8, 12)(9, 11, 10), 
(5, 7)(8, 9), 
(4, 6)(5, 7)(9, 12, 11), 
(4, 5, 6, 7)(8, 11, 9), 
(2, 3)(4, 5, 6, 7)(9, 11, 12, 10), 
(1, 3)(8, 11)(9, 10)
orbits: { 1, 3, 2 }, { 4, 6, 7, 5 }, { 8, 10, 9, 12, 11 }, { 13 }

code no       3:
================
1 1 1 1 1 1 1 0 0 0 0 2 0
1 1 1 0 0 0 0 1 1 1 1 0 2
the automorphism group has order 172800
and is strongly generated by the following 12 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 0 0 0 0 2 2 2 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
2 2 2 0 0 0 0 2 2 2 2 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
2 2 2 0 0 0 0 2 2 2 2 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
, 
0 0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(11, 13), 
(10, 11), 
(9, 10), 
(9, 11, 10, 13), 
(8, 11, 9, 10), 
(7, 12)(8, 10, 11, 9), 
(6, 7, 12)(9, 10, 11), 
(5, 7, 12)(8, 11, 9), 
(4, 7, 5, 6, 12), 
(4, 13, 6, 11, 5, 8, 7, 9, 12, 10), 
(2, 3)(4, 5)(6, 7, 12)(8, 10, 9, 11), 
(1, 2, 3)(4, 5, 12, 7, 6)(8, 9, 10)
orbits: { 1, 3, 2 }, { 4, 12, 10, 5, 6, 7, 9, 11, 8, 13 }

code no       4:
================
1 1 1 1 1 1 1 0 0 0 0 2 0
1 1 1 1 0 0 0 1 1 1 1 0 2
the automorphism group has order 138240
and is strongly generated by the following 13 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 0 0 0 1 1 1 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 0 0 0 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
2 2 2 2 0 0 0 2 2 2 2 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 0 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
, 
0 0 0 0 0 0 2 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 0 
, 
0 2 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 13), 
(10, 11), 
(10, 13), 
(9, 10, 11), 
(8, 9, 10), 
(8, 11, 10, 13), 
(7, 12)(8, 10, 9, 11), 
(6, 7, 12)(9, 10), 
(5, 6, 7)(8, 10, 9), 
(3, 4)(5, 6)(9, 11), 
(2, 3)(7, 12)(8, 10, 11), 
(1, 6, 4, 5, 3, 7)(2, 12)(9, 11, 10), 
(1, 2)(6, 12, 7)(8, 11)(9, 10)
orbits: { 1, 7, 2, 12, 6, 3, 5, 4 }, { 8, 10, 13, 11, 9 }

code no       5:
================
1 1 1 1 1 1 1 0 0 0 0 2 0
2 2 1 1 0 0 0 1 1 1 1 0 2
the automorphism group has order 23040
and is strongly generated by the following 14 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
2 2 1 1 0 0 0 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 2 0 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 2 0 0 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
1 1 2 2 0 0 0 2 2 2 2 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 2 0 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
, 
0 2 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 13), 
(10, 11), 
(9, 11, 10), 
(8, 11), 
(8, 11, 10), 
(8, 10, 11, 9), 
(8, 11, 9, 10, 13), 
(7, 12)(8, 9, 11, 10), 
(6, 12)(8, 9, 11, 10), 
(6, 7)(8, 9, 10, 11), 
(5, 7)(6, 12)(8, 11)(9, 10), 
(3, 4)(5, 6, 7, 12)(8, 10, 11, 9), 
(1, 2)(3, 4)(7, 12)(8, 9, 10), 
(1, 3)(2, 4)(5, 7, 6)(8, 9, 11)
orbits: { 1, 2, 3, 4 }, { 5, 7, 12, 6 }, { 8, 11, 10, 9, 13 }

code no       6:
================
1 1 1 1 1 1 1 0 0 0 0 2 0
2 2 1 1 1 0 0 1 1 1 1 0 2
the automorphism group has order 17280
and is strongly generated by the following 12 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
1 1 2 2 2 0 0 2 2 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 2 2 2 0 0 2 2 2 2 
0 0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
1 1 2 2 2 0 0 2 2 2 2 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
2 2 1 1 1 0 0 1 1 1 1 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 0 0 
, 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 13), 
(10, 11), 
(10, 11, 13), 
(9, 10, 11), 
(9, 10, 13), 
(8, 10, 11, 9), 
(8, 11, 13)(9, 10), 
(7, 12)(8, 10, 11), 
(6, 12)(9, 10, 11), 
(4, 5)(6, 12)(8, 11, 9, 10), 
(3, 7, 4, 6)(5, 12)(8, 9, 11), 
(1, 2)(9, 11, 10)
orbits: { 1, 2 }, { 3, 6, 12, 4, 7, 5 }, { 8, 9, 13, 11, 10 }