the 72 isometry classes of irreducible [14,3,8]_3 codes are:

code no       1:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 1 1 1 1 1 0 0 0 0 0 2 0
2 1 2 1 1 0 0 1 1 0 0 0 0 2
the automorphism group has order 96
and is strongly generated by the following 6 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 2 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
2 2 2 2 2 2 2 2 2 2 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(10, 11), 
(8, 9)(10, 11), 
(6, 7)(10, 11, 12), 
(4, 5)(6, 7)(10, 12, 11), 
(2, 3)(4, 5)(6, 9, 7, 8)(11, 12)(13, 14)
orbits: { 1 }, { 2, 3 }, { 4, 5 }, { 6, 7, 8, 9 }, { 10, 11, 12 }, { 13, 14 }

code no       2:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 1 1 1 1 1 0 0 0 0 0 2 0
2 1 2 2 1 0 0 1 1 0 0 0 0 2
the automorphism group has order 48
and is strongly generated by the following 5 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
1 1 1 1 1 1 1 1 1 1 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(10, 12), 
(8, 9)(10, 12, 11), 
(6, 7)(10, 12), 
(3, 4)(10, 11)
orbits: { 1 }, { 2 }, { 3, 4 }, { 5 }, { 6, 7 }, { 8, 9 }, { 10, 12, 11 }, { 13 }, { 14 }

code no       3:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 1 1 1 1 1 0 0 0 0 0 2 0
2 2 2 2 1 0 0 1 1 0 0 0 0 2
the automorphism group has order 96
and is strongly generated by the following 7 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 2 
1 1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
2 2 2 2 2 2 2 2 2 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
2 2 2 2 2 2 2 2 2 2 2 
, 
0 2 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(10, 12), 
(10, 12, 11), 
(8, 9)(10, 11, 12), 
(6, 7)(10, 12, 11), 
(3, 4)(6, 7)(10, 12, 11), 
(1, 2)(3, 4)(6, 7)
orbits: { 1, 2 }, { 3, 4 }, { 5 }, { 6, 7 }, { 8, 9 }, { 10, 12, 11 }, { 13 }, { 14 }

code no       4:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 1 1 1 1 1 0 0 0 0 0 2 0
2 2 2 2 2 0 0 1 1 0 0 0 0 2
the automorphism group has order 576
and is strongly generated by the following 8 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 0 1 
, 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(10, 12), 
(8, 9)(10, 11), 
(6, 7), 
(4, 5)(6, 7)(8, 9), 
(3, 5, 4)(6, 7)(10, 11), 
(1, 2)(3, 5)(8, 9)(10, 12), 
(1, 9, 2, 8)(3, 11, 5, 10, 4, 12)(6, 7)(13, 14)
orbits: { 1, 2, 8, 9 }, { 3, 4, 5, 12, 10, 11 }, { 6, 7 }, { 13, 14 }

code no       5:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 1 1 1 1 1 0 0 0 0 0 2 0
1 0 2 2 1 1 0 1 1 0 0 0 0 2
the automorphism group has order 96
and is strongly generated by the following 6 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 2 2 1 1 0 1 1 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
1 1 2 2 2 2 2 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(10, 12), 
(8, 9)(11, 12), 
(5, 6)(8, 9)(11, 12), 
(3, 4)(5, 6)(8, 9), 
(1, 14)(3, 8, 4, 9)(7, 13)
orbits: { 1, 14 }, { 2 }, { 3, 4, 9, 8 }, { 5, 6 }, { 7, 13 }, { 10, 12, 11 }

code no       6:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 1 1 1 1 1 0 0 0 0 0 2 0
2 0 2 2 1 1 0 1 1 0 0 0 0 2
the automorphism group has order 48
and is strongly generated by the following 5 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(10, 11, 12), 
(8, 9)(10, 11), 
(5, 6)(8, 9)(10, 12), 
(3, 4)(5, 6)(8, 9)(10, 12)
orbits: { 1 }, { 2 }, { 3, 4 }, { 5, 6 }, { 7 }, { 8, 9 }, { 10, 12, 11 }, { 13 }, { 14 }

code no       7:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 1 1 1 1 1 0 0 0 0 0 2 0
2 1 2 2 1 1 0 1 1 0 0 0 0 2
the automorphism group has order 96
and is strongly generated by the following 6 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
1 1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
1 2 1 1 2 2 0 2 2 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 1 1 1 1 1 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(10, 11), 
(8, 9)(10, 12, 11), 
(5, 6)(10, 11), 
(3, 4)(5, 6)(8, 9)(10, 11, 12), 
(2, 14)(3, 9)(4, 8)(7, 13)(10, 12)
orbits: { 1 }, { 2, 14 }, { 3, 4, 9, 8 }, { 5, 6 }, { 7, 13 }, { 10, 11, 12 }

code no       8:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 1 1 1 1 1 0 0 0 0 0 2 0
2 0 2 2 2 1 0 1 1 0 0 0 0 2
the automorphism group has order 144
and is strongly generated by the following 6 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 2 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 1 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
1 0 1 1 1 2 0 2 2 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 0 1 
1 1 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(10, 12), 
(8, 9)(10, 11, 12), 
(4, 5)(8, 9)(10, 12), 
(3, 5)(10, 11, 12), 
(2, 14)(3, 11, 5, 12, 4, 10)(6, 13)
orbits: { 1 }, { 2, 14 }, { 3, 5, 10, 4, 11, 12 }, { 6, 13 }, { 7 }, { 8, 9 }

code no       9:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 1 1 1 1 1 0 0 0 0 0 2 0
2 2 2 2 2 1 0 1 1 0 0 0 0 2
the automorphism group has order 144
and is strongly generated by the following 6 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
2 2 2 2 2 2 2 2 2 2 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
, 
0 2 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(10, 12, 11), 
(8, 9)(10, 12), 
(4, 5)(10, 12), 
(3, 4, 5)(10, 11), 
(1, 2)(3, 4)(8, 9)(10, 11)
orbits: { 1, 2 }, { 3, 5, 4 }, { 6 }, { 7 }, { 8, 9 }, { 10, 11, 12 }, { 13 }, { 14 }

code no      10:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 1 1 1 1 1 0 0 0 0 0 2 0
2 0 2 2 2 1 1 1 1 0 0 0 0 2
the automorphism group has order 288
and is strongly generated by the following 7 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
2 2 2 2 2 2 2 2 2 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(10, 11), 
(8, 9)(10, 12, 11), 
(6, 7)(8, 9), 
(4, 5)(6, 7)(8, 9)(11, 12), 
(3, 5), 
(1, 2)(3, 12, 4, 10)(5, 11)(6, 9, 7, 8)
orbits: { 1, 2 }, { 3, 5, 10, 4, 11, 12 }, { 6, 7, 8, 9 }, { 13 }, { 14 }

code no      11:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 1 1 1 1 1 0 0 0 0 0 2 0
2 1 2 1 1 0 0 2 1 0 0 0 0 2
the automorphism group has order 24
and is strongly generated by the following 5 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(10, 11), 
(10, 12), 
(6, 7)(10, 11), 
(4, 5)(6, 7)
orbits: { 1 }, { 2 }, { 3 }, { 4, 5 }, { 6, 7 }, { 8 }, { 9 }, { 10, 11, 12 }, { 13 }, { 14 }

code no      12:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 1 1 1 1 1 0 0 0 0 0 2 0
1 0 2 1 1 1 0 2 1 0 0 0 0 2
the automorphism group has order 288
and is strongly generated by the following 7 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
2 0 1 2 2 2 0 1 2 0 0 
0 1 0 0 0 0 0 0 0 0 0 
1 1 2 2 2 2 2 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 2 0 
, 
0 2 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 2 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(10, 12), 
(5, 6)(10, 12), 
(4, 5)(10, 12), 
(4, 5, 6)(11, 12), 
(2, 8)(4, 6, 5)(7, 14)(9, 13)(10, 11, 12), 
(1, 2)(3, 8)(4, 10)(5, 12)(6, 11)(7, 9)
orbits: { 1, 2, 8, 3 }, { 4, 5, 6, 10, 12, 11 }, { 7, 14, 9, 13 }

code no      13:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 1 1 1 1 1 0 0 0 0 0 2 0
1 0 2 2 1 1 0 2 1 0 0 0 0 2
the automorphism group has order 48
and is strongly generated by the following 5 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 0 1 1 2 2 0 1 2 0 0 
0 1 0 0 0 0 0 0 0 0 0 
1 1 2 2 2 2 2 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 2 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(10, 11), 
(5, 6), 
(3, 4), 
(2, 8)(7, 14)(9, 13)(10, 11, 12)
orbits: { 1 }, { 2, 8 }, { 3, 4 }, { 5, 6 }, { 7, 14 }, { 9, 13 }, { 10, 11, 12 }

code no      14:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 1 1 1 1 1 0 0 0 0 0 2 0
2 1 2 2 1 1 0 2 1 0 0 0 0 2
the automorphism group has order 48
and is strongly generated by the following 5 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 2 
, 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(10, 11), 
(5, 6)(11, 12), 
(3, 4)(10, 12), 
(1, 2)(3, 6, 4, 5)(8, 9)
orbits: { 1, 2 }, { 3, 4, 5, 6 }, { 7 }, { 8, 9 }, { 10, 11, 12 }, { 13 }, { 14 }

code no      15:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 1 1 1 1 1 0 0 0 0 0 2 0
1 0 2 1 1 0 0 2 1 1 0 0 0 2
the automorphism group has order 128
and is strongly generated by the following 7 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 0 1 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
, 
0 2 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 2 0 0 
, 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(9, 10), 
(6, 7), 
(4, 5)(9, 10)(11, 12), 
(3, 8)(4, 9)(5, 10)(6, 12)(7, 11), 
(1, 2)(4, 6, 5, 7)(9, 11, 10, 12), 
(1, 3)(2, 8)(6, 10, 7, 9)(13, 14)
orbits: { 1, 2, 3, 8 }, { 4, 5, 9, 7, 10, 6, 12, 11 }, { 13, 14 }

code no      16:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 1 1 1 1 1 0 0 0 0 0 2 0
2 0 2 1 1 0 0 2 1 1 0 0 0 2
the automorphism group has order 32
and is strongly generated by the following 5 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 2 
1 1 1 1 1 1 1 1 1 1 1 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(9, 10)(11, 12), 
(6, 7)(11, 12), 
(4, 5), 
(3, 8)(4, 9, 5, 10)(6, 11)(7, 12)
orbits: { 1 }, { 2 }, { 3, 8 }, { 4, 5, 10, 9 }, { 6, 7, 11, 12 }, { 13 }, { 14 }

code no      17:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 1 1 1 1 1 0 0 0 0 0 2 0
2 2 2 1 1 0 0 2 1 1 0 0 0 2
the automorphism group has order 128
and is strongly generated by the following 6 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
2 2 2 2 2 2 2 2 2 2 2 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
, 
0 2 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 2 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(9, 10)(11, 12), 
(6, 7)(9, 10)(11, 12), 
(4, 7, 5, 6)(9, 12)(10, 11), 
(3, 8)(4, 9, 5, 10)(6, 11)(7, 12), 
(1, 2)(4, 6, 5, 7)(9, 11, 10, 12)
orbits: { 1, 2 }, { 3, 8 }, { 4, 6, 10, 7, 5, 11, 9, 12 }, { 13 }, { 14 }

code no      18:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 1 1 1 1 1 0 0 0 0 0 2 0
1 0 2 2 1 0 0 2 1 1 0 0 0 2
the automorphism group has order 16
and is strongly generated by the following 4 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(9, 10)(11, 12), 
(6, 7)(11, 12), 
(3, 4)
orbits: { 1 }, { 2 }, { 3, 4 }, { 5 }, { 6, 7 }, { 8 }, { 9, 10 }, { 11, 12 }, { 13 }, { 14 }

code no      19:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 1 1 1 1 1 0 0 0 0 0 2 0
1 1 2 2 1 0 0 2 1 1 0 0 0 2
the automorphism group has order 64
and is strongly generated by the following 6 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 0 1 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
2 2 1 1 2 0 0 1 2 2 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
1 1 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 1 0 0 0 0 0 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(9, 10), 
(6, 7), 
(3, 4)(9, 10)(11, 12), 
(1, 2)(3, 4)(6, 7), 
(1, 12)(2, 11)(5, 14)(8, 13)
orbits: { 1, 2, 12, 11 }, { 3, 4 }, { 5, 14 }, { 6, 7 }, { 8, 13 }, { 9, 10 }

code no      20:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 1 1 1 1 1 0 0 0 0 0 2 0
2 1 2 2 1 0 0 2 1 1 0 0 0 2
the automorphism group has order 32
and is strongly generated by the following 5 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
0 2 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 2 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(9, 10), 
(6, 7)(9, 10), 
(3, 4)(6, 7)(9, 10), 
(1, 2)(3, 10, 4, 9)(5, 8)(6, 12)(7, 11)
orbits: { 1, 2 }, { 3, 4, 9, 10 }, { 5, 8 }, { 6, 7, 12, 11 }, { 13 }, { 14 }

code no      21:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 2 1 1 1 1 0 0 0 0 0 2 0
2 2 1 2 1 0 0 1 1 0 0 0 0 2
the automorphism group has order 96
and is strongly generated by the following 7 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 2 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
, 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(10, 11), 
(10, 11, 12), 
(8, 9)(11, 12), 
(6, 7)(10, 12), 
(3, 4)(6, 9, 7, 8)(10, 11)(13, 14), 
(1, 2)(10, 12)
orbits: { 1, 2 }, { 3, 4 }, { 5 }, { 6, 7, 8, 9 }, { 10, 11, 12 }, { 13, 14 }

code no      22:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 2 1 1 1 1 0 0 0 0 0 2 0
2 2 1 2 2 0 0 1 1 0 0 0 0 2
the automorphism group has order 96
and is strongly generated by the following 6 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
1 1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(10, 12), 
(8, 9)(10, 12, 11), 
(6, 7)(8, 9), 
(4, 5)(6, 7), 
(1, 2)(4, 5)(6, 7)(11, 12)
orbits: { 1, 2 }, { 3 }, { 4, 5 }, { 6, 7 }, { 8, 9 }, { 10, 12, 11 }, { 13 }, { 14 }

code no      23:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 2 1 1 1 1 0 0 0 0 0 2 0
2 1 0 2 2 1 0 1 1 0 0 0 0 2
the automorphism group has order 48
and is strongly generated by the following 5 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
1 2 0 1 1 2 0 2 2 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 1 1 1 1 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
2 2 2 2 2 2 2 2 2 2 2 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(10, 11), 
(8, 9)(11, 12), 
(4, 5)(10, 12), 
(2, 14)(4, 8, 5, 9)(7, 13)(10, 12, 11)
orbits: { 1 }, { 2, 14 }, { 3 }, { 4, 5, 9, 8 }, { 6 }, { 7, 13 }, { 10, 11, 12 }

code no      24:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 2 1 1 1 1 0 0 0 0 0 2 0
2 2 0 2 2 1 0 1 1 0 0 0 0 2
the automorphism group has order 96
and is strongly generated by the following 6 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 2 
, 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
2 2 2 1 1 1 1 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
2 2 0 2 2 1 0 1 1 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(10, 11), 
(8, 9)(10, 12), 
(4, 5)(10, 12), 
(1, 2)(4, 5)(8, 9), 
(1, 9, 2, 8)(3, 13)(4, 5)(6, 14)(10, 11)
orbits: { 1, 2, 8, 9 }, { 3, 13 }, { 4, 5 }, { 6, 14 }, { 7 }, { 10, 11, 12 }

code no      25:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 2 1 1 1 1 0 0 0 0 0 2 0
2 2 1 2 2 1 0 1 1 0 0 0 0 2
the automorphism group has order 96
and is strongly generated by the following 6 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
1 1 2 1 1 2 0 2 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 1 1 1 1 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 1 0 
, 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(10, 12), 
(8, 9)(10, 11), 
(4, 5)(10, 11), 
(3, 14)(4, 8)(5, 9)(7, 13)(10, 11, 12), 
(1, 2)(8, 9)
orbits: { 1, 2 }, { 3, 14 }, { 4, 5, 8, 9 }, { 6 }, { 7, 13 }, { 10, 12, 11 }

code no      26:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 2 1 1 1 1 0 0 0 0 0 2 0
2 1 0 2 2 1 1 1 1 0 0 0 0 2
the automorphism group has order 48
and is strongly generated by the following 5 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 1 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 2 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(10, 11, 12), 
(8, 9)(10, 11, 12), 
(6, 7)(11, 12), 
(4, 5)(6, 7)
orbits: { 1 }, { 2 }, { 3 }, { 4, 5 }, { 6, 7 }, { 8, 9 }, { 10, 12, 11 }, { 13 }, { 14 }

code no      27:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 2 1 1 1 1 0 0 0 0 0 2 0
2 2 0 2 2 2 1 1 1 0 0 0 0 2
the automorphism group has order 576
and is strongly generated by the following 8 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
2 2 2 2 2 2 2 2 2 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
2 2 0 2 2 2 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
1 1 1 1 1 1 1 1 1 1 1 
2 2 2 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
, 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
2 2 2 2 2 2 2 2 2 2 2 
, 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
2 2 2 2 2 2 2 2 2 2 2 
0 0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(10, 11, 12), 
(8, 9)(10, 12, 11), 
(5, 6), 
(4, 6, 5)(11, 12), 
(3, 14)(4, 10)(5, 11)(6, 12)(7, 13), 
(1, 2)(10, 12, 11), 
(1, 8)(2, 9)(3, 7)(4, 10)(5, 12, 6, 11)(13, 14)
orbits: { 1, 2, 8, 9 }, { 3, 14, 7, 13 }, { 4, 5, 10, 6, 11, 12 }

code no      28:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 2 1 1 1 1 0 0 0 0 0 2 0
2 1 0 2 1 1 0 2 1 0 0 0 0 2
the automorphism group has order 24
and is strongly generated by the following 4 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(10, 11), 
(5, 6)(10, 12), 
(2, 4)(3, 8)(5, 6)(7, 9)(10, 11)(13, 14)
orbits: { 1 }, { 2, 4 }, { 3, 8 }, { 5, 6 }, { 7, 9 }, { 10, 11, 12 }, { 13, 14 }

code no      29:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 2 1 1 1 1 0 0 0 0 0 2 0
2 2 0 1 1 0 0 2 1 1 0 0 0 2
the automorphism group has order 64
and is strongly generated by the following 6 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
0 2 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 2 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(9, 10), 
(6, 7)(11, 12), 
(4, 5)(6, 7), 
(3, 8)(6, 10, 7, 9)(11, 12)(13, 14), 
(1, 2)(9, 10)
orbits: { 1, 2 }, { 3, 8 }, { 4, 5 }, { 6, 7, 9, 10 }, { 11, 12 }, { 13, 14 }

code no      30:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 2 1 1 1 1 0 0 0 0 0 2 0
2 1 0 2 1 0 0 2 1 1 0 0 0 2
the automorphism group has order 16
and is strongly generated by the following 4 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(9, 10), 
(6, 7)(9, 10)(11, 12), 
(2, 4)(3, 8)(6, 9)(7, 10)(13, 14)
orbits: { 1 }, { 2, 4 }, { 3, 8 }, { 5 }, { 6, 7, 9, 10 }, { 11, 12 }, { 13, 14 }

code no      31:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 2 1 1 1 1 0 0 0 0 0 2 0
2 2 0 2 1 0 0 2 1 1 0 0 0 2
the automorphism group has order 16
and is strongly generated by the following 4 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(9, 10), 
(6, 7)(11, 12), 
(1, 2)(11, 12)
orbits: { 1, 2 }, { 3 }, { 4 }, { 5 }, { 6, 7 }, { 8 }, { 9, 10 }, { 11, 12 }, { 13 }, { 14 }

code no      32:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 2 1 1 1 1 0 0 0 0 0 2 0
2 1 1 2 1 0 0 2 1 1 0 0 0 2
the automorphism group has order 32
and is strongly generated by the following 5 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 2 0 0 0 0 0 0 0 
2 1 1 2 1 0 0 2 1 1 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 2 0 0 0 0 0 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(9, 10)(11, 12), 
(6, 7), 
(2, 3)(9, 10)(11, 12), 
(2, 11)(3, 12)(5, 14)(6, 7)(8, 13)
orbits: { 1 }, { 2, 3, 11, 12 }, { 4 }, { 5, 14 }, { 6, 7 }, { 8, 13 }, { 9, 10 }

code no      33:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 2 1 1 1 1 0 0 0 0 0 2 0
2 2 1 2 1 0 0 2 1 1 0 0 0 2
the automorphism group has order 32
and is strongly generated by the following 5 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
1 1 1 2 2 2 2 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
1 1 2 1 2 0 0 1 2 2 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
2 2 2 2 2 2 2 2 2 2 2 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(9, 10)(11, 12), 
(6, 7)(9, 10)(11, 12), 
(1, 2)(6, 7)(11, 12), 
(1, 6)(2, 7)(5, 13)(8, 14)(11, 12)
orbits: { 1, 2, 6, 7 }, { 3 }, { 4 }, { 5, 13 }, { 8, 14 }, { 9, 10 }, { 11, 12 }

code no      34:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 2 1 1 1 1 0 0 0 0 0 2 0
1 1 0 2 2 0 0 2 1 1 0 0 0 2
the automorphism group has order 128
and is strongly generated by the following 7 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
1 1 0 2 2 0 0 2 1 1 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
2 2 2 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
2 2 2 1 1 1 1 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
1 1 0 2 2 0 0 2 1 1 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
1 1 1 1 1 1 1 1 1 1 1 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(9, 10)(11, 12), 
(6, 7), 
(4, 5)(6, 7)(11, 12), 
(3, 14)(6, 10)(7, 9)(8, 13), 
(1, 2)(9, 10), 
(1, 4, 2, 5)(3, 13)(6, 7)(8, 14)(11, 12)
orbits: { 1, 2, 5, 4 }, { 3, 14, 13, 8 }, { 6, 7, 10, 9 }, { 11, 12 }

code no      35:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 2 1 1 1 1 0 0 0 0 0 2 0
2 1 1 2 2 0 0 2 1 1 0 0 0 2
the automorphism group has order 32
and is strongly generated by the following 5 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(9, 10), 
(6, 7)(9, 10)(11, 12), 
(4, 5)(6, 7)(11, 12), 
(2, 3)
orbits: { 1 }, { 2, 3 }, { 4, 5 }, { 6, 7 }, { 8 }, { 9, 10 }, { 11, 12 }, { 13 }, { 14 }

code no      36:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 2 1 1 1 1 0 0 0 0 0 2 0
2 2 1 2 2 0 0 2 1 1 0 0 0 2
the automorphism group has order 64
and is strongly generated by the following 6 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 2 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(9, 10)(11, 12), 
(6, 7), 
(4, 5)(6, 7)(9, 10), 
(1, 2)(9, 10), 
(1, 10)(2, 9)(4, 11, 5, 12)(13, 14)
orbits: { 1, 2, 10, 9 }, { 3 }, { 4, 5, 12, 11 }, { 6, 7 }, { 8 }, { 13, 14 }

code no      37:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 2 1 1 1 1 0 0 0 0 0 2 0
2 0 0 2 2 1 0 2 1 1 0 0 0 2
the automorphism group has order 64
and is strongly generated by the following 6 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
1 0 0 1 1 2 0 1 2 2 0 
2 2 2 1 1 1 1 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(9, 10), 
(4, 5)(9, 10)(11, 12), 
(2, 3), 
(2, 10, 3, 9)(7, 14)(8, 13), 
(1, 6)(2, 9)(3, 10)(4, 5)(7, 8)(13, 14)
orbits: { 1, 6 }, { 2, 3, 9, 10 }, { 4, 5 }, { 7, 14, 8, 13 }, { 11, 12 }

code no      38:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 2 1 1 1 1 0 0 0 0 0 2 0
2 1 0 2 2 1 0 2 1 1 0 0 0 2
the automorphism group has order 16
and is strongly generated by the following 4 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(9, 10)(11, 12), 
(4, 5)(9, 10), 
(2, 3)(4, 5)(6, 7)(9, 12)(10, 11)
orbits: { 1 }, { 2, 3 }, { 4, 5 }, { 6, 7 }, { 8 }, { 9, 10, 12, 11 }, { 13 }, { 14 }

code no      39:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 2 2 1 1 1 1 0 0 0 0 2 0
2 2 1 1 2 2 0 0 1 1 0 0 0 2
the automorphism group has order 768
and is strongly generated by the following 9 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
, 
0 0 0 0 0 0 0 0 0 0 2 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(9, 10)(11, 12), 
(7, 8)(11, 12), 
(5, 6)(11, 12), 
(3, 4)(5, 6), 
(3, 5, 4, 6)(7, 10, 8, 9)(13, 14), 
(1, 2)(3, 4)(5, 6)(11, 12), 
(1, 9, 7, 2, 10, 8)(3, 11, 5, 4, 12, 6), 
(1, 11)(2, 12)(3, 9, 4, 10)(5, 7)(6, 8)
orbits: { 1, 2, 8, 11, 7, 12, 10, 6, 3, 9, 5, 4 }, { 13, 14 }

code no      40:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 2 2 1 1 1 1 0 0 0 0 2 0
2 2 1 0 2 1 1 0 2 1 0 0 0 2
the automorphism group has order 96
and is strongly generated by the following 6 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 2 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 2 0 0 0 0 0 
, 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
0 0 0 0 0 0 0 0 0 0 2 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(6, 7)(11, 12), 
(3, 4)(5, 9)(6, 11)(7, 12)(8, 10), 
(3, 9)(4, 5)(6, 11)(7, 12)(13, 14), 
(1, 6, 2, 7)(3, 5)(4, 8)(9, 10), 
(1, 11)(2, 12)(3, 10)(4, 9)(5, 8)
orbits: { 1, 7, 11, 6, 12, 2 }, { 3, 4, 9, 5, 10, 8 }, { 13, 14 }

code no      41:
================
1 1 1 1 1 1 1 0 0 0 0 2 0 0
2 2 1 1 1 0 0 1 1 0 0 0 2 0
2 1 2 1 1 0 0 0 0 1 1 0 0 2
the automorphism group has order 2592
and is strongly generated by the following 10 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
1 2 1 2 2 0 0 0 0 2 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
1 1 2 2 2 0 0 2 2 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
1 1 2 2 2 0 0 2 2 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 2 2 2 0 0 2 2 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
2 2 1 1 1 0 0 1 1 0 0 
0 0 0 0 0 0 0 2 0 0 0 
, 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
2 2 1 1 1 0 0 1 1 0 0 
0 0 0 0 0 0 0 2 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
0 0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
2 1 2 1 1 0 0 0 0 1 1 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
2 2 1 1 1 0 0 1 1 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 11), 
(9, 13), 
(8, 9, 13), 
(7, 12)(8, 9)(10, 11), 
(6, 7, 12)(8, 13, 9), 
(4, 5)(8, 9)(10, 11), 
(2, 3)(4, 5)(6, 7)(8, 11, 9, 14, 13, 10), 
(1, 2)(4, 5)(6, 9, 12, 8, 7, 13), 
(1, 2, 3)(6, 8, 14)(7, 9, 10, 12, 13, 11)
orbits: { 1, 2, 3 }, { 4, 5 }, { 6, 12, 7, 13, 14, 9, 10, 8, 11 }

code no      42:
================
1 1 1 1 1 1 1 0 0 0 0 2 0 0
2 2 1 1 1 0 0 1 1 0 0 0 2 0
2 2 1 1 0 1 0 0 0 1 1 0 0 2
the automorphism group has order 1152
and is strongly generated by the following 9 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
1 1 2 2 0 2 0 0 0 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
2 2 1 1 1 0 0 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
2 2 1 1 1 0 0 1 1 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
2 2 1 1 1 0 0 1 1 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
2 2 1 1 0 1 0 0 0 1 1 
0 0 0 0 0 0 0 0 0 2 0 
2 2 1 1 1 0 0 1 1 0 0 
0 0 0 0 0 0 0 2 0 0 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
0 2 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
1 1 2 2 2 0 0 2 2 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 11), 
(9, 13)(10, 11), 
(8, 9)(10, 11), 
(8, 9, 13), 
(7, 12)(8, 13)(10, 11), 
(5, 6)(8, 11, 13, 10, 9, 14), 
(3, 12, 4, 7)(5, 6), 
(1, 2)(3, 12, 4, 7)(5, 6)(8, 13)(10, 11)
orbits: { 1, 2 }, { 3, 7, 12, 4 }, { 5, 6 }, { 8, 9, 13, 14, 10, 11 }

code no      43:
================
1 1 1 1 1 1 1 0 0 0 0 2 0 0
2 2 1 1 1 0 0 1 1 0 0 0 2 0
1 1 2 0 0 1 0 1 0 1 1 0 0 2
the automorphism group has order 288
and is strongly generated by the following 8 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 1 0 0 2 0 2 0 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
2 2 1 0 0 2 0 2 0 2 2 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
2 2 1 1 1 0 0 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
1 1 2 2 2 0 0 2 2 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
2 2 1 1 1 0 0 1 1 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 11), 
(10, 14), 
(9, 13)(10, 11), 
(7, 12)(10, 11), 
(4, 5)(7, 12)(9, 13)(10, 11), 
(3, 8, 6)(4, 9, 7, 5, 13, 12), 
(1, 2)(3, 6, 8)(4, 7, 13, 5, 12, 9)
orbits: { 1, 2 }, { 3, 6, 8 }, { 4, 5, 12, 9, 7, 13 }, { 10, 11, 14 }

code no      44:
================
1 1 1 1 1 1 1 0 0 0 0 2 0 0
2 2 1 1 1 0 0 1 1 0 0 0 2 0
2 1 2 0 0 1 0 1 0 1 1 0 0 2
the automorphism group has order 288
and is strongly generated by the following 8 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
2 1 2 0 0 1 0 1 0 1 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 2 1 0 0 2 0 2 0 2 2 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
2 2 1 1 1 0 0 1 1 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
1 1 2 2 2 0 0 2 2 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
1 1 2 2 2 0 0 2 2 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
2 2 1 1 1 0 0 1 1 0 0 
0 0 0 0 0 2 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 11), 
(10, 14), 
(9, 13), 
(7, 12)(9, 13)(10, 11), 
(4, 5)(7, 12), 
(3, 6, 8)(4, 7, 13)(5, 12, 9), 
(1, 2)(4, 5)(6, 8)(7, 13)(9, 12)
orbits: { 1, 2 }, { 3, 8, 6 }, { 4, 5, 13, 9, 7, 12 }, { 10, 11, 14 }

code no      45:
================
1 1 1 1 1 1 1 0 0 0 0 2 0 0
2 2 1 1 1 0 0 1 1 0 0 0 2 0
2 1 2 1 0 1 0 1 0 1 1 0 0 2
the automorphism group has order 48
and is strongly generated by the following 6 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
1 2 1 2 0 2 0 2 0 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
2 1 2 1 0 1 0 1 0 1 1 
0 0 0 0 0 0 0 0 0 2 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
1 1 2 2 2 0 0 2 2 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
0 2 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 11), 
(10, 11, 14), 
(9, 13), 
(7, 12), 
(1, 2)(6, 8)(7, 9)(12, 13)
orbits: { 1, 2 }, { 3 }, { 4 }, { 5 }, { 6, 8 }, { 7, 12, 9, 13 }, { 10, 11, 14 }

code no      46:
================
1 1 1 1 1 1 1 0 0 0 0 2 0 0
2 2 1 1 1 0 0 1 1 0 0 0 2 0
2 1 2 2 0 1 0 1 0 1 1 0 0 2
the automorphism group has order 96
and is strongly generated by the following 7 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
1 2 1 1 0 2 0 2 0 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 2 1 1 0 2 0 2 0 2 2 
0 0 0 0 0 0 0 0 0 1 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
2 2 1 1 1 0 0 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
1 1 2 2 2 0 0 2 2 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 11), 
(10, 11, 14), 
(9, 13)(10, 11), 
(7, 12)(10, 11), 
(3, 4)(9, 13), 
(1, 2)(3, 4)(6, 8)(7, 9)(12, 13)
orbits: { 1, 2 }, { 3, 4 }, { 5 }, { 6, 8 }, { 7, 12, 9, 13 }, { 10, 11, 14 }

code no      47:
================
1 1 1 1 1 1 1 0 0 0 0 2 0 0
2 2 1 1 1 0 0 1 1 0 0 0 2 0
0 0 2 1 1 1 0 1 0 1 1 0 0 2
the automorphism group has order 192
and is strongly generated by the following 8 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 1 2 2 2 0 2 0 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 2 1 1 1 0 1 0 1 1 
0 0 0 0 0 0 0 0 0 2 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
2 2 1 1 1 0 0 1 1 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 2 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
0 2 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
2 2 1 1 1 0 0 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 11), 
(10, 11, 14), 
(9, 13), 
(7, 12)(10, 11), 
(6, 8)(7, 13, 12, 9), 
(4, 5)(7, 12)(10, 11), 
(1, 2)(7, 12)(9, 13)(10, 11)
orbits: { 1, 2 }, { 3 }, { 4, 5 }, { 6, 8 }, { 7, 12, 9, 13 }, { 10, 11, 14 }

code no      48:
================
1 1 1 1 1 1 1 0 0 0 0 2 0 0
2 2 1 1 1 0 0 1 1 0 0 0 2 0
0 0 2 2 1 1 0 1 0 1 1 0 0 2
the automorphism group has order 192
and is strongly generated by the following 8 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 1 1 2 2 0 2 0 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 2 2 1 1 0 1 0 1 1 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
1 1 2 2 2 0 0 2 2 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
1 1 2 2 2 0 0 2 2 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
1 1 2 2 2 0 0 2 2 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
1 1 2 2 2 0 0 2 2 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
1 1 2 2 2 0 0 2 2 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 11), 
(10, 14), 
(9, 13), 
(7, 12)(9, 13), 
(6, 8)(7, 9, 12, 13), 
(3, 4)(7, 12)(9, 13), 
(1, 2)(9, 13)
orbits: { 1, 2 }, { 3, 4 }, { 5 }, { 6, 8 }, { 7, 12, 13, 9 }, { 10, 11, 14 }

code no      49:
================
1 1 1 1 1 1 1 0 0 0 0 2 0 0
2 2 1 1 1 0 0 1 1 0 0 0 2 0
1 0 2 1 0 2 0 1 0 1 1 0 0 2
the automorphism group has order 48
and is strongly generated by the following 6 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 0 2 1 0 2 0 1 0 1 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
2 0 1 2 0 1 0 2 0 2 2 
0 0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
1 1 2 2 2 0 0 2 2 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 2 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 11), 
(10, 11, 14), 
(9, 13), 
(7, 12), 
(3, 4)(6, 8)(7, 13, 12, 9)
orbits: { 1 }, { 2 }, { 3, 4 }, { 5 }, { 6, 8 }, { 7, 12, 9, 13 }, { 10, 11, 14 }

code no      50:
================
1 1 1 1 1 1 1 0 0 0 0 2 0 0
2 2 1 1 1 0 0 1 1 0 0 0 2 0
0 0 2 1 0 2 1 2 1 1 1 0 0 2
the automorphism group has order 432
and is strongly generated by the following 8 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 1 2 0 1 2 1 2 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 2 1 0 2 1 2 1 1 1 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
2 2 1 1 1 0 0 1 1 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
1 1 2 2 2 0 0 2 2 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
0 2 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 11), 
(10, 14), 
(6, 8)(7, 9)(12, 13), 
(4, 5)(6, 12)(8, 13), 
(3, 8, 7, 4, 9, 6)(5, 13, 12)(10, 11), 
(3, 12, 9, 5, 7, 13)(4, 6, 8), 
(1, 2)(3, 6)(4, 7)(5, 12)(8, 9)(10, 11)
orbits: { 1, 2 }, { 3, 6, 13, 8, 12, 9, 4, 5, 7 }, { 10, 11, 14 }

code no      51:
================
1 1 1 1 1 1 1 0 0 0 0 2 0 0
2 2 1 1 1 0 0 1 1 0 0 0 2 0
1 0 2 1 0 2 1 2 1 1 1 0 0 2
the automorphism group has order 216
and is strongly generated by the following 7 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 0 2 1 0 2 1 2 1 1 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
2 0 1 2 0 1 2 1 2 2 2 
0 0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
2 2 1 1 1 0 0 1 1 0 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 2 2 2 0 0 2 2 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
, 
0 2 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
2 2 1 1 1 0 0 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 11), 
(10, 11, 14), 
(4, 5)(6, 13)(7, 9)(8, 12)(10, 11), 
(3, 8, 12)(4, 13, 7)(5, 9, 6)(10, 11), 
(3, 9, 7)(4, 8, 6)(5, 13, 12)(10, 11), 
(1, 2)(3, 4)(6, 12)(9, 13)(10, 11)
orbits: { 1, 2 }, { 3, 12, 7, 4, 8, 13, 6, 9, 5 }, { 10, 11, 14 }

code no      52:
================
1 1 1 1 1 1 1 0 0 0 0 2 0 0
1 1 1 1 0 0 0 1 1 1 0 0 2 0
1 1 0 0 1 1 0 1 1 0 1 0 0 2
the automorphism group has order 3072
and is strongly generated by the following 10 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 0 0 1 1 0 1 1 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
2 2 2 2 0 0 0 2 2 2 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 0 0 2 2 0 2 2 0 2 
0 0 0 0 0 0 1 0 0 0 0 
, 
0 0 0 0 0 0 1 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 2 0 0 2 2 0 2 2 0 2 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 2 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 13), 
(8, 9), 
(7, 12)(10, 13), 
(5, 9)(6, 8)(7, 13, 12, 10), 
(3, 4)(7, 12)(10, 13), 
(3, 5, 8, 4, 6, 9)(7, 11, 13, 12, 14, 10), 
(1, 13, 7)(2, 10, 12)(3, 8, 6, 4, 9, 5), 
(1, 7, 10)(2, 12, 13)(3, 6, 8)(4, 5, 9), 
(1, 11, 2, 14)(3, 4)(5, 6)(7, 10)(12, 13)
orbits: { 1, 7, 10, 14, 12, 13, 2, 11 }, { 3, 4, 9, 5, 8, 6 }

code no      53:
================
1 1 1 1 1 1 1 0 0 0 0 2 0 0
1 1 1 1 0 0 0 1 1 1 0 0 2 0
2 1 0 0 1 1 0 1 1 0 1 0 0 2
the automorphism group has order 128
and is strongly generated by the following 7 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
1 2 0 0 2 2 0 2 2 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
2 2 2 2 0 0 0 2 2 2 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 0 0 0 1 1 1 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 13), 
(8, 9), 
(7, 12)(10, 13), 
(5, 9)(6, 8)(7, 10)(12, 13), 
(5, 8)(6, 9)(7, 13)(10, 12), 
(3, 4)
orbits: { 1 }, { 2 }, { 3, 4 }, { 5, 9, 8, 6 }, { 7, 12, 10, 13 }, { 11, 14 }

code no      54:
================
1 1 1 1 1 1 1 0 0 0 0 2 0 0
1 1 1 1 0 0 0 1 1 1 0 0 2 0
2 2 0 0 1 1 0 1 1 0 1 0 0 2
the automorphism group has order 1536
and is strongly generated by the following 9 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
2 2 0 0 1 1 0 1 1 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 2 2 2 0 0 0 2 2 2 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 13), 
(8, 9), 
(7, 12)(8, 9), 
(5, 9)(6, 8)(7, 13, 12, 10), 
(3, 4)(8, 9), 
(1, 10, 2, 13)(3, 8)(4, 9)(5, 12)(6, 7), 
(1, 8, 2, 9)(3, 13, 4, 10)(5, 6), 
(1, 6, 2, 5)(3, 7, 4, 12)
orbits: { 1, 13, 9, 5, 10, 7, 2, 3, 8, 4, 12, 6 }, { 11, 14 }

code no      55:
================
1 1 1 1 1 1 1 0 0 0 0 2 0 0
1 1 1 1 0 0 0 1 1 1 0 0 2 0
2 1 1 0 1 1 0 1 1 0 1 0 0 2
the automorphism group has order 512
and is strongly generated by the following 9 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
1 2 2 0 2 2 0 2 2 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
2 2 2 2 0 0 0 2 2 2 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
2 2 2 2 0 0 0 2 2 2 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
2 2 2 2 0 0 0 2 2 2 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
1 2 2 0 2 2 0 2 2 0 2 
0 0 0 0 0 0 0 0 0 0 1 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
, 
0 0 0 2 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 2 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 13), 
(8, 9)(10, 13), 
(7, 12)(10, 13), 
(5, 6)(7, 12)(8, 9)(10, 13), 
(5, 9)(6, 8)(7, 13)(10, 12), 
(2, 3)(5, 6)(7, 12)(8, 9), 
(2, 14)(3, 11)(5, 6)(7, 13, 12, 10), 
(1, 4)(5, 13, 6, 10)(7, 9, 12, 8)
orbits: { 1, 4 }, { 2, 3, 14, 11 }, { 5, 6, 9, 10, 8, 13, 7, 12 }

code no      56:
================
1 1 1 1 1 1 1 0 0 0 0 2 0 0
1 1 1 1 0 0 0 1 1 1 0 0 2 0
2 1 0 0 2 1 0 2 1 0 1 0 0 2
the automorphism group has order 192
and is strongly generated by the following 8 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
1 2 0 0 1 2 0 1 2 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
2 2 2 2 0 0 0 2 2 2 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 0 0 0 2 2 2 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
2 2 2 2 0 0 0 2 2 2 0 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 13), 
(7, 12), 
(5, 8)(6, 9)(7, 10)(12, 13), 
(3, 4)(7, 12), 
(1, 2)(3, 4)(5, 6)(7, 12)(8, 9), 
(1, 9)(2, 8)(3, 10)(4, 13), 
(1, 8, 6, 2, 9, 5)(3, 13, 7, 4, 10, 12)
orbits: { 1, 2, 9, 5, 8, 6 }, { 3, 4, 10, 12, 13, 7 }, { 11, 14 }

code no      57:
================
1 1 1 1 1 1 1 0 0 0 0 2 0 0
1 1 1 1 0 0 0 1 1 1 0 0 2 0
2 1 1 0 2 1 0 2 1 0 1 0 0 2
the automorphism group has order 96
and is strongly generated by the following 7 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
1 2 2 0 1 2 0 1 2 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
2 2 2 2 0 0 0 2 2 2 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
0 0 0 0 1 0 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
0 0 0 0 0 0 0 2 0 0 0 
1 1 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 13), 
(7, 12), 
(5, 8)(6, 9)(7, 10, 12, 13), 
(2, 3)(10, 13), 
(1, 5)(2, 12)(3, 7)(4, 6), 
(1, 5, 8)(2, 7, 10, 3, 12, 13)(4, 6, 9)
orbits: { 1, 5, 8 }, { 2, 3, 12, 13, 7, 10 }, { 4, 6, 9 }, { 11, 14 }

code no      58:
================
1 1 1 1 1 1 1 0 0 0 0 2 0 0
2 1 1 1 0 0 0 1 1 1 0 0 2 0
1 2 0 0 1 1 0 1 1 0 1 0 0 2
the automorphism group has order 128
and is strongly generated by the following 7 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 1 0 0 2 2 0 2 2 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 2 2 2 0 0 0 2 2 2 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
0 2 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 13), 
(8, 9), 
(7, 12)(8, 9), 
(5, 6)(7, 12)(8, 9), 
(3, 4)(8, 9), 
(1, 2)(3, 6, 4, 5)(8, 9)(10, 11)(13, 14)
orbits: { 1, 2 }, { 3, 4, 5, 6 }, { 7, 12 }, { 8, 9 }, { 10, 13, 11, 14 }

code no      59:
================
1 1 1 1 1 1 1 0 0 0 0 2 0 0
2 1 1 1 0 0 0 1 1 1 0 0 2 0
1 2 1 0 1 1 0 1 1 0 1 0 0 2
the automorphism group has order 64
and is strongly generated by the following 6 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
1 2 1 0 1 1 0 1 1 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 2 2 2 0 0 0 2 2 2 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
1 2 2 2 0 0 0 2 2 2 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 13), 
(8, 9), 
(7, 12), 
(5, 6)(8, 9), 
(2, 4)(5, 13)(6, 10)(7, 8, 12, 9)
orbits: { 1 }, { 2, 4 }, { 3 }, { 5, 6, 13, 10 }, { 7, 12, 9, 8 }, { 11, 14 }

code no      60:
================
1 1 1 1 1 1 1 0 0 0 0 2 0 0
2 1 1 1 0 0 0 1 1 1 0 0 2 0
1 2 0 0 2 1 0 1 1 0 1 0 0 2
the automorphism group has order 64
and is strongly generated by the following 6 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 1 0 0 1 2 0 2 2 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
2 1 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
2 1 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
2 1 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
0 0 0 0 0 2 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
1 2 0 0 2 1 0 1 1 0 1 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 1 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 2 0 0 0 0 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 13), 
(8, 9)(10, 13), 
(7, 12)(8, 9)(10, 13), 
(3, 4)(7, 12), 
(1, 6)(3, 11, 4, 14)(7, 9)(8, 12)
orbits: { 1, 6 }, { 2 }, { 3, 4, 14, 11 }, { 5 }, { 7, 12, 9, 8 }, { 10, 13 }

code no      61:
================
1 1 1 1 1 1 1 0 0 0 0 2 0 0
2 1 1 1 0 0 0 1 1 1 0 0 2 0
2 2 2 0 2 1 0 1 1 0 1 0 0 2
the automorphism group has order 64
and is strongly generated by the following 6 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
1 1 1 0 1 2 0 2 2 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 2 2 2 0 0 0 2 2 2 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
2 1 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
1 1 1 0 1 2 0 2 2 0 2 
0 0 0 0 0 0 0 0 0 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 13), 
(8, 9)(10, 13), 
(7, 12), 
(2, 3)(8, 9), 
(1, 6)(2, 12, 3, 7)(8, 9)(10, 11, 13, 14)
orbits: { 1, 6 }, { 2, 3, 7, 12 }, { 4 }, { 5 }, { 8, 9 }, { 10, 13, 14, 11 }

code no      62:
================
1 1 1 1 1 1 1 0 0 0 0 2 0 0
2 1 1 1 0 0 0 1 1 1 0 0 2 0
0 1 1 0 2 1 0 2 1 0 1 0 0 2
the automorphism group has order 96
and is strongly generated by the following 6 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 1 1 0 2 1 0 2 1 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 2 2 2 0 0 0 2 2 2 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
2 1 1 1 0 0 0 1 1 1 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
0 0 0 0 0 0 0 2 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
2 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
1 2 2 2 0 0 0 2 2 2 0 
0 0 0 0 0 0 1 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 13), 
(7, 12), 
(5, 8)(6, 9)(7, 10, 12, 13), 
(2, 3)(5, 8)(6, 9)(7, 13, 12, 10), 
(1, 8)(2, 3)(4, 9)(7, 11)(10, 13)(12, 14)
orbits: { 1, 8, 5 }, { 2, 3 }, { 4, 9, 6 }, { 7, 12, 13, 10, 11, 14 }

code no      63:
================
1 1 1 1 1 1 1 0 0 0 0 2 0 0
2 1 1 1 0 0 0 1 1 1 0 0 2 0
0 2 1 0 2 1 0 2 1 0 1 0 0 2
the automorphism group has order 32
and is strongly generated by the following 5 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 2 1 0 2 1 0 2 1 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
2 1 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
2 1 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
2 1 1 1 0 0 0 1 1 1 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
2 1 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 13), 
(7, 12)(10, 13), 
(5, 8)(6, 9)(7, 10, 12, 13), 
(2, 3)(5, 6)(7, 12)(8, 9)(10, 13)
orbits: { 1 }, { 2, 3 }, { 4 }, { 5, 8, 6, 9 }, { 7, 12, 13, 10 }, { 11, 14 }

code no      64:
================
1 1 1 1 1 1 1 0 0 0 0 2 0 0
2 1 1 1 0 0 0 1 1 1 0 0 2 0
1 2 1 0 2 1 0 2 1 0 1 0 0 2
the automorphism group has order 16
and is strongly generated by the following 4 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 1 2 0 1 2 0 1 2 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 2 2 2 0 0 0 2 2 2 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
1 2 2 2 0 0 0 2 2 2 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 13), 
(7, 12), 
(2, 3)(5, 9)(6, 8)(7, 13)(10, 12)
orbits: { 1 }, { 2, 3 }, { 4 }, { 5, 9 }, { 6, 8 }, { 7, 12, 13, 10 }, { 11, 14 }

code no      65:
================
1 1 1 1 1 1 1 0 0 0 0 2 0 0
2 2 1 1 0 0 0 1 1 1 0 0 2 0
2 1 2 0 1 1 0 1 1 0 1 0 0 2
the automorphism group has order 256
and is strongly generated by the following 7 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
2 1 2 0 1 1 0 1 1 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
2 2 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
2 2 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
2 2 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 2 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 13), 
(8, 9), 
(7, 12), 
(5, 6), 
(3, 4)(5, 13)(6, 10)(7, 9)(8, 12), 
(1, 3)(2, 4)(5, 12)(6, 7)(8, 9)(10, 13)
orbits: { 1, 3, 4, 2 }, { 5, 6, 13, 12, 10, 7, 8, 9 }, { 11, 14 }

code no      66:
================
1 1 1 1 1 1 1 0 0 0 0 2 0 0
2 2 1 1 0 0 0 1 1 1 0 0 2 0
2 1 2 0 2 1 0 1 1 0 1 0 0 2
the automorphism group has order 32
and is strongly generated by the following 5 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
1 2 1 0 1 2 0 2 2 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
2 2 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
1 1 2 2 0 0 0 2 2 2 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
0 0 0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
1 1 2 2 0 0 0 2 2 2 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 2 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 13), 
(8, 9)(10, 13), 
(7, 12), 
(1, 4)(2, 3)(7, 12)(8, 13, 9, 10)
orbits: { 1, 4 }, { 2, 3 }, { 5 }, { 6 }, { 7, 12 }, { 8, 9, 10, 13 }, { 11, 14 }

code no      67:
================
1 1 1 1 1 1 1 0 0 0 0 2 0 0
2 2 1 1 0 0 0 1 1 1 0 0 2 0
1 1 2 2 2 1 0 1 1 0 1 0 0 2
the automorphism group has order 512
and is strongly generated by the following 8 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 1 1 1 2 0 2 2 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
2 2 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
1 1 2 2 0 0 0 2 2 2 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
2 2 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
2 2 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
2 2 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
0 0 0 0 0 0 0 0 0 2 0 
2 2 1 1 0 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
1 1 2 2 2 1 0 1 1 0 1 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 13), 
(8, 9)(10, 13), 
(7, 12)(10, 13), 
(5, 6)(7, 12)(8, 13)(9, 10), 
(3, 4), 
(1, 4)(2, 3)(7, 12)(8, 10, 9, 13), 
(1, 13, 2, 10)(3, 8, 4, 9)(7, 11, 12, 14)
orbits: { 1, 4, 10, 3, 8, 13, 9, 2 }, { 5, 6 }, { 7, 12, 14, 11 }

code no      68:
================
1 1 1 1 1 1 1 0 0 0 0 2 0 0
2 2 1 1 0 0 0 1 1 1 0 0 2 0
2 1 2 1 2 1 0 2 1 0 1 0 0 2
the automorphism group has order 64
and is strongly generated by the following 5 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
2 1 2 1 2 1 0 2 1 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 2 2 0 0 0 2 2 2 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 2 2 0 0 0 2 2 2 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
1 1 2 2 0 0 0 2 2 2 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 13), 
(7, 12)(10, 13), 
(3, 4)(5, 9)(6, 8)(7, 13)(10, 12), 
(1, 4, 2, 3)(5, 9, 6, 8)(7, 10)(12, 13)
orbits: { 1, 3, 4, 2 }, { 5, 9, 8, 6 }, { 7, 12, 13, 10 }, { 11, 14 }

code no      69:
================
1 1 1 1 1 1 1 0 0 0 0 2 0 0
2 2 1 1 1 0 0 1 1 1 0 0 2 0
2 1 2 2 0 1 0 1 1 0 1 0 0 2
the automorphism group has order 192
and is strongly generated by the following 7 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
2 1 2 2 0 1 0 1 1 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 2 2 2 0 0 2 2 2 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
1 1 2 2 2 0 0 2 2 2 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
1 1 2 2 2 0 0 2 2 2 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
0 0 0 0 2 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
1 2 1 1 0 2 0 2 2 0 2 
0 0 0 0 0 0 0 0 0 0 1 
2 2 1 1 1 0 0 1 1 1 0 
0 0 0 0 0 0 0 1 0 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 13), 
(8, 9), 
(7, 12)(8, 9), 
(3, 4)(8, 9)(10, 13), 
(3, 7, 4, 12)(5, 6)(8, 13)(9, 10), 
(1, 5)(3, 7, 4, 12)(8, 11, 9, 14)(10, 13)
orbits: { 1, 5, 6 }, { 2 }, { 3, 4, 12, 7 }, { 8, 9, 13, 14, 10, 11 }

code no      70:
================
1 1 1 1 1 1 1 0 0 0 0 2 0 0
2 2 1 1 1 0 0 1 1 1 0 0 2 0
2 1 2 2 0 1 0 2 1 0 1 0 0 2
the automorphism group has order 64
and is strongly generated by the following 6 elements:
(
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
2 1 2 2 0 1 0 2 1 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
2 2 1 1 1 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 2 2 2 0 0 2 2 2 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 2 2 2 0 0 2 2 2 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
2 2 1 1 1 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 2 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
, 
0 0 0 0 0 2 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
2 1 2 2 0 1 0 2 1 0 1 
0 0 0 0 0 0 0 0 0 2 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 13), 
(7, 12)(10, 13), 
(3, 4)(10, 13), 
(2, 9)(3, 13)(4, 10)(7, 11)(12, 14), 
(1, 6)(3, 7, 4, 12)(10, 11, 13, 14)
orbits: { 1, 6 }, { 2, 9 }, { 3, 4, 13, 12, 10, 7, 11, 14 }, { 5 }, { 8 }

code no      71:
================
1 1 1 1 1 1 1 0 0 0 0 2 0 0
2 2 1 1 1 0 0 1 1 1 0 0 2 0
2 0 2 2 1 1 0 2 1 0 1 0 0 2
the automorphism group has order 64
and is strongly generated by the following 6 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
1 0 1 1 2 2 0 1 2 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 2 2 2 0 0 2 2 2 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 2 2 2 0 0 2 2 2 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
2 2 1 1 1 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
2 0 2 2 1 1 0 2 1 0 1 
2 2 1 1 1 0 0 1 1 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 13), 
(7, 12)(10, 13), 
(3, 4)(7, 12)(10, 13), 
(1, 2)(3, 12)(4, 7)(5, 6), 
(1, 5)(2, 6)(3, 4)(10, 14)(11, 13)
orbits: { 1, 2, 5, 6 }, { 3, 4, 12, 7 }, { 8 }, { 9 }, { 10, 13, 14, 11 }

code no      72:
================
1 1 1 1 1 1 1 0 0 0 0 2 0 0
2 2 1 1 1 0 0 1 1 1 0 0 2 0
1 0 2 1 0 2 1 2 1 0 1 0 0 2
the automorphism group has order 32
and is strongly generated by the following 5 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 0 1 2 0 1 2 1 2 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 2 2 2 0 0 2 2 2 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
0 2 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 0 0 
2 2 1 1 1 0 0 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
2 0 1 2 0 1 2 1 2 0 2 
0 0 0 0 0 0 0 0 0 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 13), 
(3, 6)(4, 7)(5, 12)(8, 9), 
(1, 2)(4, 5)(7, 12)(8, 9)(10, 13), 
(1, 3)(2, 6)(5, 7)(10, 11, 13, 14)
orbits: { 1, 2, 3, 6 }, { 4, 7, 5, 12 }, { 8, 9 }, { 10, 13, 14, 11 }