the 3 isometry classes of irreducible [14,3,9]_3 codes are:

code no       1:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0
2 2 2 2 1 1 1 1 0 0 0 0 2 0
2 2 1 0 2 2 1 0 1 1 0 0 0 2
the automorphism group has order 384
and is strongly generated by the following 8 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 2 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 0 0 
1 1 1 1 1 1 1 1 1 1 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
1 1 2 0 1 1 2 0 2 2 0 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 0 1 
1 1 1 1 2 2 2 2 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 1 0 0 0 0 0 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 2 0 0 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
2 2 1 0 2 2 1 0 1 1 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 1 0 0 0 
2 2 2 2 1 1 1 1 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
, 
0 2 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 2 0 
, 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
)
acting on the columns of the generator matrix as follows (in order):
(11, 12), 
(9, 10), 
(5, 6)(9, 10)(11, 12), 
(4, 14)(5, 12)(6, 11)(7, 13)(9, 10), 
(3, 4)(7, 8)(9, 11, 10, 12), 
(3, 4, 14)(5, 9, 11)(6, 10, 12)(7, 13, 8), 
(1, 2)(3, 4)(7, 8)(9, 12)(10, 11), 
(1, 6)(2, 5)(3, 7)(4, 8)
orbits: { 1, 2, 6, 5, 11, 12, 9, 10 }, { 3, 4, 14, 7, 8, 13 }

code no       2:
================
1 1 1 1 1 1 1 1 0 0 0 2 0 0
2 2 2 1 1 1 0 0 1 1 0 0 2 0
2 1 0 2 1 0 2 1 1 0 1 0 0 2
the automorphism group has order 144
and is strongly generated by the following 7 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
1 2 0 1 2 0 1 2 2 0 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 1 2 2 2 0 0 2 2 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
1 1 1 1 1 1 1 1 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 1 2 2 2 0 0 2 2 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 2 0 1 2 0 1 2 2 0 2 
0 0 0 0 0 0 0 0 0 1 0 
, 
0 2 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
1 1 1 1 1 1 1 1 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 1 2 2 2 0 0 2 2 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
0 0 2 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
1 1 1 1 1 1 1 1 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 0 0 2 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(10, 13), 
(2, 3)(4, 7)(5, 12)(6, 8)(10, 13), 
(2, 7)(3, 4)(5, 12)(10, 11, 13, 14), 
(1, 2)(4, 8)(5, 7)(6, 12)(10, 13), 
(1, 3)(4, 12)(5, 8)(6, 7), 
(1, 4, 7)(2, 5, 8)(3, 6, 12)
orbits: { 1, 2, 3, 7, 8, 4, 12, 5, 6 }, { 9 }, { 10, 13, 14, 11 }

code no       3:
================
1 1 1 1 1 1 1 1 0 0 0 2 0 0
2 2 2 1 1 1 0 0 1 1 0 0 2 0
2 1 0 2 1 0 2 1 2 1 1 0 0 2
the automorphism group has order 864
and is strongly generated by the following 7 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
1 2 0 1 2 0 1 2 1 2 2 
, 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
2 2 2 1 1 1 0 0 1 1 0 
0 0 0 0 0 0 0 0 0 2 0 
1 1 1 1 1 1 1 1 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 1 2 2 2 0 0 2 2 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
2 2 2 1 1 1 0 0 1 1 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 1 0 0 0 0 
2 2 2 2 2 2 2 2 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
2 2 2 1 1 1 0 0 1 1 0 
0 0 0 0 0 0 0 0 2 0 0 
2 2 2 2 2 2 2 2 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
1 1 1 1 1 1 1 1 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
2 2 2 1 1 1 0 0 1 1 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
0 0 0 0 0 0 0 2 0 0 0 
1 1 1 1 1 1 1 1 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
1 1 1 2 2 2 0 0 2 2 0 
0 0 0 0 0 0 0 0 0 0 2 
)
acting on the columns of the generator matrix as follows (in order):
(11, 14), 
(5, 6)(7, 13)(8, 10)(9, 12), 
(4, 12, 9)(5, 8, 13)(6, 7, 10), 
(4, 13)(5, 9)(6, 10)(8, 12), 
(4, 10)(5, 13)(6, 9)(7, 12), 
(2, 3)(4, 5)(7, 12)(10, 13), 
(1, 8)(2, 12)(3, 7)(10, 13)
orbits: { 1, 8, 10, 5, 12, 7, 6, 4, 13, 9, 2, 3 }, { 11, 14 }