the 1 isometry classes of irreducible [16,5,9]_3 codes are:

code no       1:
================
1 1 1 1 1 1 1 1 1 1 1 2 0 0 0 0
2 2 2 2 1 1 1 1 0 0 0 0 2 0 0 0
2 2 1 0 2 2 1 0 1 1 0 0 0 2 0 0
2 1 2 1 2 0 0 1 2 1 0 0 0 0 2 0
1 2 0 2 2 1 2 0 1 0 1 0 0 0 0 2
the automorphism group has order 18
and is strongly generated by the following 3 elements:
(
1 0 0 0 0 0 0 0 0 0 0 
1 2 0 2 2 1 2 0 1 0 1 
0 0 0 0 0 0 1 0 0 0 0 
2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 2 0 0 0 0 0 0 
1 1 1 1 2 2 2 2 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 2 0 0 0 
1 1 2 0 1 1 2 0 2 2 0 
, 
0 0 0 0 0 0 0 2 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 1 0 2 2 1 0 1 1 0 
0 0 0 0 1 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
1 2 1 2 1 0 0 2 1 2 0 
0 0 0 0 0 2 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 0 0 1 
, 
1 2 1 2 1 0 0 2 1 2 0 
1 1 2 0 1 1 2 0 2 2 0 
0 0 0 0 0 0 0 2 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 
2 2 2 2 1 1 1 1 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 
)
acting on the columns of the generator matrix as follows (in order):
(2, 16)(3, 7)(4, 12)(6, 13)(8, 10)(11, 14), 
(1, 6, 8)(2, 14, 4)(3, 9, 10)(7, 13, 15), 
(1, 9, 15)(2, 4, 14)(3, 13, 8)(6, 10, 7)(11, 16, 12)
orbits: { 1, 8, 15, 10, 6, 13, 9, 7, 3 }, { 2, 16, 4, 14, 11, 12 }, { 5 }