the 2 isometry classes of irreducible [37,33,3]_3 codes are:

code no       1:
================
1 1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
1 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
1 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
2 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
0 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
1 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
2 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
the automorphism group has order 23328
and is strongly generated by the following 10 elements:
(
1 0 0 0 
0 2 0 0 
0 0 2 0 
0 0 0 2 
, 
1 0 0 0 
0 2 0 0 
0 0 2 0 
2 0 0 2 
, 
2 0 0 0 
0 1 0 0 
0 0 2 0 
1 0 1 1 
, 
1 0 0 0 
0 2 0 0 
0 0 1 0 
1 0 2 2 
, 
1 0 0 0 
0 1 0 0 
0 0 1 0 
1 2 2 2 
, 
2 0 0 0 
0 2 0 0 
1 1 1 0 
1 1 2 2 
, 
1 0 0 0 
0 1 0 0 
1 2 0 2 
1 2 2 0 
, 
2 0 0 0 
1 0 1 2 
2 2 1 1 
1 1 1 1 
, 
2 0 0 0 
2 0 1 2 
2 2 1 1 
0 1 1 1 
, 
2 0 0 0 
0 2 1 0 
1 2 1 2 
1 0 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(5, 28)(6, 7)(8, 9)(11, 12)(14, 15)(16, 17)(19, 20)(22, 23)(25, 26)(30, 31)(33, 34)(36, 37), 
(4, 16)(5, 27)(6, 7)(8, 9)(11, 12)(14, 15)(18, 19)(21, 22)(24, 25)(29, 30)(32, 33)(35, 36), 
(4, 25)(5, 18)(6, 7)(10, 13)(11, 14)(12, 15)(16, 24)(17, 26)(19, 27)(20, 28)(21, 30)(22, 29)(23, 31)(32, 33)(35, 36), 
(4, 26)(5, 19)(6, 7)(10, 13)(11, 14)(12, 15)(16, 25)(17, 24)(18, 28)(20, 27)(21, 31)(22, 30)(23, 29)(32, 34)(35, 37), 
(4, 28)(5, 16)(17, 27)(18, 26)(19, 25)(20, 24)(21, 31)(22, 30)(23, 29)(32, 37)(33, 36)(34, 35), 
(3, 11)(4, 31)(5, 23)(8, 10)(9, 12)(13, 14)(16, 29)(17, 30)(18, 26)(19, 24)(20, 25)(21, 28)(22, 27), 
(3, 20)(4, 12)(5, 27)(8, 19)(9, 18)(10, 17)(11, 16)(13, 23)(14, 22)(15, 21)(24, 30)(25, 29)(26, 31), 
(2, 34)(3, 31)(4, 5)(6, 32)(7, 33)(8, 30)(9, 29)(13, 20)(14, 18)(15, 19)(16, 27)(17, 28), 
(2, 33)(3, 29, 9, 30, 8, 31)(4, 5, 17, 28, 16, 27)(6, 34)(7, 32)(10, 11, 12)(13, 20, 15, 19, 14, 18)(21, 22, 23)(24, 26, 25), 
(2, 22, 27, 26, 36, 9, 17, 13)(3, 16, 15, 6, 21, 28, 25, 37)(4, 14, 7, 23, 5, 24, 35, 8)(10, 19, 34, 30, 12, 18, 32, 31)(11, 20, 33, 29)
orbits: { 1 }, { 2, 34, 33, 13, 32, 35, 6, 19, 36, 7, 20, 10, 14, 23, 18, 17, 37, 24, 15, 27, 5, 25, 8, 26, 28, 3, 11, 12, 31, 22, 4, 29, 9, 16, 30, 21 }

code no       2:
================
1 1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
1 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
1 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
2 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
0 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
1 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
0 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
the automorphism group has order 1296
and is strongly generated by the following 8 elements:
(
1 0 0 0 
0 1 0 0 
0 0 2 0 
0 0 1 1 
, 
1 0 0 0 
0 1 0 0 
0 1 0 2 
0 1 2 0 
, 
1 0 0 0 
0 1 0 0 
1 2 0 2 
1 2 2 0 
, 
1 0 0 0 
0 1 0 0 
2 0 1 1 
2 0 0 2 
, 
1 0 0 0 
0 1 0 0 
1 0 1 1 
1 0 0 2 
, 
2 0 0 0 
2 0 2 1 
1 1 2 2 
0 2 2 2 
, 
2 0 0 0 
0 0 1 2 
0 2 1 1 
0 1 1 1 
, 
1 0 1 2 
0 1 1 2 
0 1 1 0 
0 1 2 2 
)
acting on the columns of the generator matrix as follows (in order):
(4, 24)(5, 19)(8, 9)(10, 13)(11, 15)(12, 14)(16, 25)(17, 26)(18, 27)(20, 28)(21, 29)(22, 30)(23, 31), 
(3, 21)(4, 13)(5, 26)(8, 23)(9, 22)(10, 18)(11, 20)(12, 19)(14, 17)(15, 16)(24, 27)(25, 28)(30, 31), 
(3, 20)(4, 12)(5, 27)(8, 19)(9, 18)(10, 17)(11, 16)(13, 23)(14, 22)(15, 21)(24, 30)(25, 29)(26, 31), 
(3, 26)(4, 16)(5, 12)(8, 24)(9, 25)(10, 28)(11, 27)(13, 31)(14, 29)(15, 30)(18, 22)(19, 21)(20, 23), 
(3, 25)(4, 17)(5, 10)(8, 26)(9, 24)(11, 28)(12, 27)(13, 30)(14, 31)(15, 29)(18, 23)(19, 22)(20, 21), 
(2, 34)(3, 31)(4, 27)(5, 16)(6, 33)(7, 32)(8, 29)(9, 30)(11, 12)(13, 20)(14, 19)(15, 18)(17, 28)(21, 22)(24, 25)(35, 36), 
(2, 32)(3, 29)(4, 27)(5, 17)(6, 33)(7, 34)(8, 31)(9, 30)(13, 18)(14, 19)(15, 20)(16, 28), 
(1, 34)(2, 37)(3, 21, 18, 24, 27, 10)(4, 13, 29)(5, 20, 9)(6, 36)(8, 14, 19, 16, 28, 31)(11, 26, 22)(12, 17, 23, 30, 25, 15)
orbits: { 1, 34, 2, 7, 32, 37 }, { 3, 21, 20, 26, 25, 31, 29, 10, 15, 19, 22, 28, 11, 23, 13, 5, 17, 8, 16, 9, 24, 30, 14, 18, 27, 12, 4 }, { 6, 33, 36, 35 }