the 1 isometry classes of irreducible [38,34,3]_3 codes are:

code no       1:
================
1 1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
1 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
1 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
2 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
0 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
1 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
2 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
0 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
the automorphism group has order 15552
and is strongly generated by the following 9 elements:
(
2 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 
, 
1 0 0 0 
0 2 0 0 
0 0 1 0 
0 0 2 2 
, 
1 0 0 0 
0 2 0 0 
0 0 1 0 
0 1 0 1 
, 
1 0 0 0 
0 2 0 0 
2 0 2 0 
2 0 0 2 
, 
2 0 0 0 
0 1 0 0 
2 1 0 2 
2 1 2 0 
, 
2 0 0 0 
0 2 0 0 
2 1 1 0 
2 1 2 2 
, 
2 0 0 0 
2 0 2 1 
1 1 2 2 
0 2 2 2 
, 
2 0 0 0 
0 2 2 0 
0 2 1 2 
0 0 2 0 
, 
0 2 2 1 
2 0 0 2 
1 0 1 0 
1 0 1 2 
)
acting on the columns of the generator matrix as follows (in order):
(5, 28)(6, 7)(8, 9)(11, 12)(14, 15)(16, 17)(19, 20)(22, 23)(25, 26)(30, 31)(33, 34)(36, 37), 
(4, 24)(5, 20)(6, 7)(10, 13)(11, 14)(12, 15)(16, 26)(17, 25)(18, 27)(19, 28)(21, 29)(22, 31)(23, 30)(33, 34)(36, 37), 
(4, 18)(5, 25)(6, 7)(10, 13)(11, 14)(12, 15)(16, 19)(17, 20)(24, 27)(26, 28)(32, 35)(33, 36)(34, 37), 
(3, 8)(4, 16)(6, 7)(10, 11)(13, 14)(18, 19)(21, 22)(24, 26)(27, 28)(29, 31)(33, 34)(36, 37), 
(3, 23, 8, 21, 9, 22)(4, 15, 16, 13, 17, 14)(5, 26, 27, 25, 28, 24)(6, 7)(10, 20, 11, 18, 12, 19)(29, 30, 31)(33, 34)(36, 37), 
(3, 12)(4, 30)(5, 21)(8, 11)(9, 10)(13, 15)(16, 31)(17, 29)(18, 25)(19, 26)(20, 24)(22, 28)(23, 27), 
(2, 34)(3, 31)(4, 27)(5, 16)(6, 33)(7, 32)(8, 29)(9, 30)(11, 12)(13, 20)(14, 19)(15, 18)(17, 28)(21, 22)(24, 25)(35, 36), 
(2, 21, 10)(3, 4, 35)(5, 34, 31, 28, 33, 30)(6, 23, 12, 7, 22, 11)(8, 16, 37, 9, 17, 36)(13, 18, 24)(14, 20, 26, 15, 19, 25)(27, 32, 29), 
(1, 38)(2, 11, 6, 28, 7, 16)(3, 29, 30, 23, 22, 8)(4, 32, 10, 33, 27, 34)(5, 36, 17, 35, 12, 37)(9, 21, 31)(13, 20, 26)(14, 15, 25, 24, 18, 19)
orbits: { 1, 38 }, { 2, 34, 10, 16, 33, 37, 5, 27, 13, 11, 19, 9, 21, 32, 17, 26, 4, 15, 31, 8, 7, 36, 6, 28, 12, 20, 25, 24, 30, 18, 23, 29, 14, 22, 35, 3 }