the 1 isometry classes of irreducible [7,1,7]_3 codes are:

code no       1:
================
1 1 1 1 1 1 2
the automorphism group has order 5040
and is strongly generated by the following 8 elements:
(
2 0 0 0 0 0 
0 2 0 0 0 0 
0 0 2 0 0 0 
0 0 0 2 0 0 
0 0 0 0 2 0 
1 1 1 1 1 1 
, 
2 0 0 0 0 0 
0 2 0 0 0 0 
0 0 2 0 0 0 
0 0 0 2 0 0 
0 0 0 0 0 2 
0 0 0 0 2 0 
, 
2 0 0 0 0 0 
0 2 0 0 0 0 
0 0 2 0 0 0 
0 0 0 0 0 2 
0 0 0 0 2 0 
0 0 0 2 0 0 
, 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 
0 0 0 1 0 0 
, 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
0 0 1 0 0 0 
0 0 0 0 0 1 
, 
2 0 0 0 0 0 
0 0 0 0 2 0 
0 0 2 0 0 0 
0 0 0 2 0 0 
0 2 0 0 0 0 
0 0 0 0 0 2 
, 
0 0 0 0 0 2 
0 0 2 0 0 0 
0 0 0 2 0 0 
2 0 0 0 0 0 
0 2 0 0 0 0 
0 0 0 0 2 0 
, 
1 1 1 1 1 1 
0 2 0 0 0 0 
0 0 0 0 2 0 
0 0 2 0 0 0 
2 0 0 0 0 0 
0 0 0 2 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(6, 7), 
(5, 6), 
(4, 6), 
(4, 6, 5), 
(3, 5, 4), 
(2, 5), 
(1, 4, 3, 2, 5, 6), 
(1, 5, 3, 4, 6, 7)
orbits: { 1, 6, 7, 5, 4, 3, 2 }