the 1 isometry classes of irreducible [8,2,6]_3 codes are:

code no       1:
================
1 1 1 1 1 0 2 0
2 2 1 1 0 1 0 2
the automorphism group has order 384
and is strongly generated by the following 8 elements:
(
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
1 1 2 2 0 2 
, 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
2 2 2 2 2 0 
0 0 0 0 0 1 
, 
2 0 0 0 0 0 
0 2 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 0 1 
0 0 0 0 1 0 
, 
2 0 0 0 0 0 
0 2 0 0 0 0 
0 0 0 0 2 0 
1 1 1 1 1 0 
0 0 0 2 0 0 
0 0 0 0 0 1 
, 
0 1 0 0 0 0 
1 0 0 0 0 0 
0 0 0 1 0 0 
0 0 1 0 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 
, 
2 2 2 2 2 0 
0 0 0 0 1 0 
0 0 0 1 0 0 
0 0 1 0 0 0 
0 1 0 0 0 0 
0 0 0 0 0 2 
, 
0 0 2 0 0 0 
0 0 0 2 0 0 
1 1 1 1 1 0 
0 0 0 0 2 0 
0 2 0 0 0 0 
0 0 0 0 0 2 
, 
2 2 1 1 0 1 
0 0 0 0 0 2 
0 1 0 0 0 0 
1 0 0 0 0 0 
0 0 2 0 0 0 
1 1 1 1 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(6, 8), 
(5, 7), 
(5, 6)(7, 8), 
(3, 7, 4, 5), 
(1, 2)(3, 4), 
(1, 7)(2, 5)(3, 4), 
(1, 7, 3)(2, 5, 4), 
(1, 4, 7, 6, 2, 3, 5, 8)
orbits: { 1, 2, 7, 3, 8, 5, 4, 6 }