the 1 isometry classes of irreducible [9,1,9]_3 codes are:

code no       1:
================
1 1 1 1 1 1 1 1 2
the automorphism group has order 362880
and is strongly generated by the following 12 elements:
(
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 
2 2 2 2 2 2 2 2 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 
, 
2 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 
0 0 0 2 0 0 0 0 
0 0 0 0 2 0 0 0 
0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 2 
0 0 0 0 0 2 0 0 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 
, 
2 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 
0 0 0 0 2 0 0 0 
0 0 0 0 0 2 0 0 
0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 
0 0 0 0 0 0 2 0 
, 
2 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 
0 0 0 0 2 0 0 0 
0 0 0 0 0 0 2 0 
0 0 2 0 0 0 0 0 
0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 
, 
2 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 
0 0 0 0 0 2 0 0 
0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 
0 0 0 0 0 0 2 0 
0 0 0 0 2 0 0 0 
, 
2 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 
0 0 0 0 0 0 2 0 
0 0 0 0 2 0 0 0 
0 2 0 0 0 0 0 0 
0 0 0 0 0 2 0 0 
0 0 0 2 0 0 0 0 
0 0 2 0 0 0 0 0 
, 
0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 
0 0 0 0 2 0 0 0 
2 0 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 
0 0 2 0 0 0 0 0 
0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 
, 
1 1 1 1 1 1 1 1 
0 0 0 0 2 0 0 0 
0 0 2 0 0 0 0 0 
0 0 0 2 0 0 0 0 
2 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 
0 0 0 0 0 2 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(8, 9), 
(7, 8), 
(6, 8, 7), 
(5, 8)(6, 7), 
(5, 7, 6), 
(4, 7)(5, 6), 
(4, 6, 5)(7, 8), 
(3, 6)(4, 7, 5), 
(3, 9)(4, 5, 8, 6), 
(2, 5, 4, 7, 3, 8), 
(1, 4, 2)(3, 6, 7, 5), 
(1, 5, 2, 6, 8, 7, 9)
orbits: { 1, 2, 9, 8, 4, 5, 3, 7, 6 }