the 1 isometry classes of irreducible [10,2,8]_4 codes are:

code no       1:
================
1 1 1 1 1 1 1 0 1 0
3 3 2 2 1 1 0 1 0 1
the automorphism group has order 3840
and is strongly generated by the following 10 elements:
(
3 0 0 0 0 0 0 0 
0 3 0 0 0 0 0 0 
0 0 3 0 0 0 0 0 
0 0 0 3 0 0 0 0 
0 0 0 0 3 0 0 0 
0 0 0 0 0 3 0 0 
0 0 0 0 0 0 3 0 
2 2 1 1 3 3 0 3 
, 0
, 
3 0 0 0 0 0 0 0 
0 3 0 0 0 0 0 0 
0 0 3 0 0 0 0 0 
0 0 0 3 0 0 0 0 
0 0 0 0 3 0 0 0 
0 0 0 0 0 3 0 0 
3 3 3 3 3 3 3 0 
0 0 0 0 0 0 0 3 
, 0
, 
3 0 0 0 0 0 0 0 
0 3 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 2 0 0 0 
0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 
2 2 2 2 2 2 2 0 
, 1
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
, 0
, 
3 0 0 0 0 0 0 0 
0 3 0 0 0 0 0 0 
0 0 3 0 0 0 0 0 
0 0 0 3 0 0 0 0 
3 3 3 3 3 3 3 0 
0 0 0 0 0 0 3 0 
0 0 0 0 0 3 0 0 
0 0 0 0 0 0 0 3 
, 1
, 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
, 0
, 
3 0 0 0 0 0 0 0 
0 3 0 0 0 0 0 0 
0 0 0 0 0 0 3 0 
3 3 3 3 3 3 3 0 
0 0 0 0 3 0 0 0 
0 0 0 0 0 3 0 0 
0 0 0 3 0 0 0 0 
0 0 0 0 0 0 0 2 
, 1
, 
3 0 0 0 0 0 0 0 
0 3 0 0 0 0 0 0 
0 0 0 0 0 3 0 0 
0 0 0 0 3 0 0 0 
3 3 3 3 3 3 3 0 
0 0 0 0 0 0 3 0 
0 0 0 3 0 0 0 0 
0 0 0 0 0 0 0 2 
, 0
, 
0 0 0 0 3 0 0 0 
0 0 0 0 0 3 0 0 
0 3 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 
0 0 0 0 0 0 3 0 
3 3 3 3 3 3 3 0 
0 0 3 0 0 0 0 0 
0 0 0 0 0 0 0 1 
, 1
, 
2 2 1 1 3 3 0 3 
0 0 0 0 0 0 0 3 
1 1 1 1 1 1 1 0 
0 0 0 0 0 0 1 0 
3 0 0 0 0 0 0 0 
0 3 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 
0 0 0 1 0 0 0 0 
, 0
)
acting on the columns of the generator matrix as follows (in order):
(8, 10), 
(7, 9), 
(7, 10, 9, 8), 
(5, 6), 
(5, 9)(6, 7), 
(3, 4), 
(3, 9, 4, 7), 
(3, 9, 5, 4, 7, 6), 
(1, 4, 9, 6, 2, 3, 7, 5), 
(1, 5, 7, 4, 8, 2, 6, 9, 3, 10)
orbits: { 1, 5, 10, 6, 9, 7, 8, 3, 2, 4 }