the 4 isometry classes of irreducible [11,2,8]_4 codes are:

code no       1:
================
1 1 1 1 1 1 1 1 1 1 0
3 2 2 2 1 1 1 0 0 0 1
the automorphism group has order 2592
and is strongly generated by the following 8 elements:
(
3 0 0 0 0 0 0 0 0 
0 3 0 0 0 0 0 0 0 
0 0 3 0 0 0 0 0 0 
0 0 0 3 0 0 0 0 0 
0 0 0 0 3 0 0 0 0 
0 0 0 0 0 3 0 0 0 
0 0 0 0 0 0 3 0 0 
0 0 0 0 0 0 0 3 0 
3 3 3 3 3 3 3 3 3 
, 0
, 
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 
1 1 1 1 1 1 1 1 1 
, 0
, 
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 1 0 0 0 
1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 1 0 
, 0
, 
3 0 0 0 0 0 0 0 0 
0 3 0 0 0 0 0 0 0 
0 0 3 0 0 0 0 0 0 
0 0 0 3 0 0 0 0 0 
3 3 3 3 3 3 3 3 3 
0 0 0 0 0 0 0 0 3 
0 0 0 0 0 0 0 3 0 
0 0 0 0 0 3 0 0 0 
0 0 0 0 0 0 3 0 0 
, 1
, 
2 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 
2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 2 
0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 2 0 0 
, 1
, 
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 
1 1 1 1 1 1 1 1 1 
, 0
, 
2 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 
2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 2 
0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 2 0 0 
0 0 0 2 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 
, 1
, 
2 1 1 1 3 3 3 0 0 
0 0 0 0 0 0 0 2 0 
2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 0 
0 3 0 0 0 0 0 0 0 
0 0 0 3 0 0 0 0 0 
, 0
)
acting on the columns of the generator matrix as follows (in order):
(9, 10), 
(8, 10, 9), 
(6, 7)(8, 9, 10), 
(5, 10)(6, 8, 7, 9), 
(5, 10, 6, 8)(7, 9), 
(3, 4)(6, 7)(8, 10, 9), 
(2, 10, 3, 9, 4, 8), 
(1, 11)(2, 8)(3, 10)(4, 9)(5, 7)
orbits: { 1, 11 }, { 2, 8, 9, 10, 6, 4, 7, 3, 5 }

code no       2:
================
1 1 1 1 1 1 1 1 1 1 0
3 3 2 2 1 1 1 0 0 0 1
the automorphism group has order 576
and is strongly generated by the following 9 elements:
(
3 0 0 0 0 0 0 0 0 
0 3 0 0 0 0 0 0 0 
0 0 3 0 0 0 0 0 0 
0 0 0 3 0 0 0 0 0 
0 0 0 0 3 0 0 0 0 
0 0 0 0 0 3 0 0 0 
0 0 0 0 0 0 3 0 0 
0 0 0 0 0 0 0 3 0 
3 3 3 3 3 3 3 3 3 
, 0
, 
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 
1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 1 
, 0
, 
2 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 2 
2 2 2 2 2 2 2 2 2 
, 0
, 
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 
, 0
, 
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 
1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 1 
, 0
, 
3 0 0 0 0 0 0 0 0 
0 3 0 0 0 0 0 0 0 
0 0 3 0 0 0 0 0 0 
0 0 0 3 0 0 0 0 0 
0 0 0 0 0 0 0 3 0 
0 0 0 0 0 0 0 0 3 
3 3 3 3 3 3 3 3 3 
0 0 0 0 0 0 3 0 0 
0 0 0 0 3 0 0 0 0 
, 1
, 
3 0 0 0 0 0 0 0 0 
0 3 0 0 0 0 0 0 0 
0 0 0 3 0 0 0 0 0 
0 0 3 0 0 0 0 0 0 
0 0 0 0 3 0 0 0 0 
0 0 0 0 0 0 3 0 0 
0 0 0 0 0 3 0 0 0 
0 0 0 0 0 0 0 0 3 
0 0 0 0 0 0 0 3 0 
, 0
, 
0 3 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 
0 0 3 0 0 0 0 0 0 
0 0 0 3 0 0 0 0 0 
3 3 3 3 3 3 3 3 3 
0 0 0 0 0 0 0 3 0 
0 0 0 0 0 0 0 0 3 
0 0 0 0 0 0 3 0 0 
0 0 0 0 3 0 0 0 0 
, 1
, 
0 0 0 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 
1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 1 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 
, 0
)
acting on the columns of the generator matrix as follows (in order):
(9, 10), 
(8, 10), 
(8, 10, 9), 
(6, 7)(8, 9), 
(5, 6, 7)(8, 10), 
(5, 9, 6, 10, 7, 8), 
(3, 4)(6, 7)(8, 9), 
(1, 2)(5, 9, 7, 8, 6, 10), 
(1, 4)(2, 3)(5, 8, 7, 9)(6, 10)
orbits: { 1, 2, 4, 3 }, { 5, 7, 8, 10, 9, 6 }, { 11 }

code no       3:
================
1 1 1 1 1 1 1 0 0 1 0
2 2 1 1 1 0 0 1 1 0 1
the automorphism group has order 2592
and is strongly generated by the following 11 elements:
(
3 0 0 0 0 0 0 0 0 
0 3 0 0 0 0 0 0 0 
0 0 3 0 0 0 0 0 0 
0 0 0 3 0 0 0 0 0 
0 0 0 0 3 0 0 0 0 
0 0 0 0 0 3 0 0 0 
0 0 0 0 0 0 3 0 0 
0 0 0 0 0 0 0 3 0 
1 1 3 3 3 0 0 3 3 
, 0
, 
3 0 0 0 0 0 0 0 0 
0 3 0 0 0 0 0 0 0 
0 0 3 0 0 0 0 0 0 
0 0 0 3 0 0 0 0 0 
0 0 0 0 3 0 0 0 0 
0 0 0 0 0 3 0 0 0 
0 0 0 0 0 0 3 0 0 
0 0 0 0 0 0 0 0 3 
0 0 0 0 0 0 0 3 0 
, 0
, 
3 0 0 0 0 0 0 0 0 
0 3 0 0 0 0 0 0 0 
0 0 3 0 0 0 0 0 0 
0 0 0 3 0 0 0 0 0 
0 0 0 0 3 0 0 0 0 
0 0 0 0 0 3 0 0 0 
0 0 0 0 0 0 3 0 0 
1 1 3 3 3 0 0 3 3 
0 0 0 0 0 0 0 0 3 
, 0
, 
3 0 0 0 0 0 0 0 0 
0 3 0 0 0 0 0 0 0 
0 0 3 0 0 0 0 0 0 
0 0 0 3 0 0 0 0 0 
0 0 0 0 3 0 0 0 0 
0 0 0 0 0 3 0 0 0 
3 3 3 3 3 3 3 0 0 
0 0 0 0 0 0 0 3 0 
0 0 0 0 0 0 0 0 3 
, 0
, 
2 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 2 0 0 
0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 2 
, 0
, 
3 0 0 0 0 0 0 0 0 
0 3 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 
3 3 1 1 1 0 0 1 1 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 1 0 0 0 
, 1
, 
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 1 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 
, 0
, 
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 1 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 
, 0
, 
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 
1 1 1 1 1 1 1 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 
, 1
, 
3 0 0 0 0 0 0 0 0 
0 3 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 2 
3 3 2 2 2 0 0 2 2 
0 0 0 0 0 0 0 2 0 
0 0 0 0 2 0 0 0 0 
0 0 0 2 0 0 0 0 0 
2 2 2 2 2 2 2 0 0 
0 0 0 0 0 2 0 0 0 
, 0
, 
0 1 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 
, 0
)
acting on the columns of the generator matrix as follows (in order):
(9, 11), 
(8, 9), 
(8, 11), 
(7, 10), 
(6, 7), 
(6, 9, 10, 11, 7, 8), 
(4, 5)(6, 10), 
(3, 5, 4)(6, 7, 10), 
(3, 10, 4, 6, 5, 7), 
(3, 10, 8, 5, 6, 9)(4, 7, 11), 
(1, 2)(3, 5, 4)(8, 9)
orbits: { 1, 2 }, { 3, 4, 7, 9, 5, 10, 11, 6, 8 }

code no       4:
================
1 1 1 1 1 1 1 0 0 1 0
3 3 2 2 1 1 0 1 1 0 1
the automorphism group has order 2304
and is strongly generated by the following 8 elements:
(
2 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 2 0 
1 1 3 3 2 2 0 2 2 
, 0
, 
2 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 2 0 
, 0
, 
2 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 2 0 0 
1 1 3 3 2 2 0 2 2 
0 0 0 0 0 0 0 0 2 
, 0
, 
3 0 0 0 0 0 0 0 0 
0 3 0 0 0 0 0 0 0 
0 0 3 0 0 0 0 0 0 
0 0 0 3 0 0 0 0 0 
0 0 0 0 3 0 0 0 0 
0 0 0 0 0 3 0 0 0 
3 3 3 3 3 3 3 0 0 
0 0 0 0 0 0 0 0 3 
0 0 0 0 0 0 0 3 0 
, 0
, 
2 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 
2 2 2 2 2 2 2 0 0 
0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 2 0 
, 1
, 
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 0 
1 1 1 1 1 1 1 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 
, 0
, 
3 0 0 0 0 0 0 0 0 
0 3 0 0 0 0 0 0 0 
0 0 0 0 0 0 3 0 0 
3 3 3 3 3 3 3 0 0 
0 0 0 0 0 3 0 0 0 
0 0 0 0 3 0 0 0 0 
0 0 0 3 0 0 0 0 0 
0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 2 0 
, 1
, 
0 0 0 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 
0 0 0 0 0 0 1 0 0 
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 2 0 
, 1
)
acting on the columns of the generator matrix as follows (in order):
(9, 11), 
(8, 9), 
(8, 11), 
(7, 10)(8, 9), 
(5, 7)(6, 10)(8, 9), 
(5, 6)(7, 10), 
(3, 10, 4, 7)(5, 6)(8, 9), 
(1, 5, 7, 4)(2, 6, 10, 3)(8, 9)
orbits: { 1, 4, 10, 7, 6, 3, 5, 2 }, { 8, 9, 11 }