the 2 isometry classes of irreducible [17,8,8]_4 codes are:

code no       1:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
3 2 2 2 1 1 1 0 0 0 1 0 0 0 0 0 0
2 3 2 1 2 1 0 1 0 0 0 1 0 0 0 0 0
2 2 3 1 1 2 0 0 1 0 0 0 1 0 0 0 0
3 2 2 1 0 0 2 1 1 0 0 0 0 1 0 0 0
2 3 2 0 1 0 1 2 1 0 0 0 0 0 1 0 0
2 1 3 3 2 1 3 2 1 0 0 0 0 0 0 1 0
1 2 3 2 3 1 2 3 1 0 0 0 0 0 0 0 1
the automorphism group has order 960
and is strongly generated by the following 8 elements:
(
2 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 3 
0 0 0 2 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 
2 2 3 1 1 2 0 0 1 
3 1 3 2 3 2 0 2 0 
1 3 3 3 2 2 2 0 0 
0 0 1 0 0 0 0 0 0 
, 0
, 
3 0 0 0 0 0 0 0 0 
0 3 0 0 0 0 0 0 0 
2 2 1 3 3 2 0 0 3 
0 0 0 0 2 0 0 0 0 
0 0 0 2 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 
3 1 1 2 0 0 1 2 2 
1 3 1 0 2 0 2 1 2 
0 0 0 0 0 1 0 0 0 
, 1
, 
2 0 0 0 0 0 0 0 0 
2 3 3 1 0 0 3 1 1 
0 0 0 0 0 1 0 0 0 
0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 3 0 
3 2 3 0 1 0 1 3 1 
1 3 1 2 1 2 0 2 0 
1 2 3 3 1 2 3 1 2 
1 2 2 2 3 3 3 0 0 
, 1
, 
3 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 
0 1 0 0 0 0 0 0 0 
0 0 0 3 0 0 0 0 0 
0 0 0 0 0 0 3 0 0 
1 3 2 2 1 3 2 1 3 
3 2 2 1 0 0 2 1 1 
3 2 2 2 1 1 1 0 0 
, 0
, 
0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 
0 0 0 3 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 
1 1 3 2 2 1 0 0 2 
3 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 3 0 
1 2 2 2 3 3 3 0 0 
0 0 0 0 2 0 0 0 0 
, 1
, 
2 1 2 0 3 0 3 2 3 
1 1 3 2 2 1 0 0 2 
0 0 2 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 
1 3 1 2 1 2 0 2 0 
0 0 0 2 0 0 0 0 0 
0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 1 0 0 
1 2 3 3 1 2 3 1 2 
, 1
, 
3 2 3 1 3 1 0 1 0 
2 3 3 3 1 1 1 0 0 
3 3 2 1 1 3 0 0 1 
0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 2 
0 1 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
, 1
, 
3 1 2 1 2 3 1 2 3 
1 3 2 2 1 3 2 1 3 
0 0 0 0 0 0 0 0 1 
3 1 3 0 2 0 2 3 2 
1 3 3 2 0 0 3 2 2 
0 0 0 0 0 3 0 0 0 
0 3 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 
1 1 2 3 3 1 0 0 3 
, 0
)
acting on the columns of the generator matrix as follows (in order):
(3, 9)(6, 13)(7, 12)(8, 11)(14, 17)(15, 16), 
(3, 6, 9, 13)(4, 5)(7, 17, 12, 14)(8, 16, 11, 15), 
(2, 12, 7, 14)(3, 4, 15, 6)(5, 13, 16, 8)(9, 11), 
(2, 4, 5)(3, 14, 8)(6, 16, 7)(9, 17, 11)(12, 13, 15), 
(1, 6, 4, 3)(2, 13, 5, 9)(7, 12, 11, 8)(14, 16), 
(1, 4, 6, 15)(2, 14, 11, 13)(5, 12)(7, 8, 16, 9), 
(1, 8, 4, 12)(2, 7, 5, 11)(3, 9, 6, 13)(14, 15), 
(1, 8, 16, 2, 7, 17)(3, 13, 9)(4, 11, 14, 5, 12, 15)
orbits: { 1, 3, 15, 12, 17, 9, 13, 6, 8, 4, 16, 11, 14, 7, 2, 5 }, { 10 }

code no       2:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
3 2 2 2 1 1 1 0 0 0 1 0 0 0 0 0 0
2 3 2 1 2 1 0 1 0 0 0 1 0 0 0 0 0
2 2 3 1 1 2 0 0 1 0 0 0 1 0 0 0 0
0 1 2 3 2 0 2 1 1 0 0 0 0 1 0 0 0
1 0 2 2 3 0 1 2 1 0 0 0 0 0 1 0 0
3 0 3 0 1 1 3 2 1 0 0 0 0 0 0 1 0
0 3 3 1 0 1 2 3 1 0 0 0 0 0 0 0 1
the automorphism group has order 16320
and is strongly generated by the following 7 elements:
(
3 0 0 0 0 0 0 0 0 
0 3 0 0 0 0 0 0 0 
0 0 3 0 0 0 0 0 0 
3 0 3 0 2 2 3 1 2 
0 3 3 2 0 2 1 3 2 
0 0 0 0 0 0 0 0 1 
0 0 0 3 0 0 0 0 0 
0 0 0 0 3 0 0 0 0 
2 2 2 2 2 2 2 2 2 
, 1
, 
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 
2 1 1 1 3 3 3 0 0 
1 2 1 3 1 3 0 3 0 
0 0 0 0 0 0 0 0 1 
3 0 1 1 2 0 3 1 3 
0 3 1 2 1 0 1 3 3 
0 0 0 0 0 1 0 0 0 
, 0
, 
2 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
3 0 2 2 1 0 3 2 3 
0 0 0 0 0 0 0 3 0 
0 0 0 0 0 0 0 0 3 
0 0 0 0 3 0 0 0 0 
0 0 2 0 0 0 0 0 0 
2 3 3 3 1 1 1 0 0 
3 2 3 1 3 1 0 1 0 
, 1
, 
3 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 
0 2 2 3 0 3 1 2 3 
0 0 0 0 0 0 3 0 0 
0 0 0 0 0 0 0 0 3 
0 3 1 2 1 0 1 3 3 
3 3 3 3 3 3 3 3 3 
0 0 0 0 2 0 0 0 0 
0 0 0 2 0 0 0 0 0 
, 0
, 
2 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 
2 0 2 0 3 3 2 1 3 
0 2 0 0 0 0 0 0 0 
1 0 2 2 3 0 1 2 1 
3 3 1 2 2 3 0 0 2 
0 0 0 0 0 0 0 0 2 
0 0 0 0 3 0 0 0 0 
2 3 2 1 2 1 0 1 0 
, 0
, 
0 0 0 0 0 2 0 0 0 
3 2 3 1 3 1 0 1 0 
1 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 
0 0 0 3 0 0 0 0 0 
3 3 2 1 1 3 0 0 1 
0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 
, 1
, 
0 2 2 1 0 1 3 2 1 
0 0 0 3 0 0 0 0 0 
0 0 3 0 0 0 0 0 0 
1 0 3 3 2 0 1 3 1 
0 3 0 0 0 0 0 0 0 
2 2 1 3 3 2 0 0 3 
0 0 0 0 0 0 0 0 2 
0 0 0 0 1 0 0 0 0 
2 0 2 0 1 1 2 3 1 
, 1
)
acting on the columns of the generator matrix as follows (in order):
(4, 7, 14, 16)(5, 8, 15, 17)(6, 13, 10, 9)(11, 12), 
(3, 10)(4, 11)(5, 12)(6, 9)(7, 15)(8, 14), 
(3, 7, 10, 15)(4, 14, 11, 8)(5, 6, 12, 9)(13, 16), 
(3, 16, 11, 13, 12, 17)(4, 9, 5, 8, 10, 7)(6, 15, 14), 
(2, 4, 16, 3, 13, 6)(5, 8, 15)(7, 11, 14, 10, 12, 9), 
(1, 3, 4, 6)(2, 8, 5, 12)(7, 9, 11, 13)(10, 15), 
(1, 12, 10, 14, 13, 6, 11, 17)(2, 5, 8, 16, 9, 7, 15, 4)
orbits: { 1, 6, 17, 9, 5, 14, 13, 4, 15, 12, 11, 10, 7, 16, 8, 2, 3 }