the 1 isometry classes of irreducible [18,9,8]_4 codes are:

code no       1:
================
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
3 2 2 2 1 1 1 0 0 0 1 0 0 0 0 0 0 0
2 3 2 1 2 1 0 1 0 0 0 1 0 0 0 0 0 0
2 2 3 1 1 2 0 0 1 0 0 0 1 0 0 0 0 0
3 2 2 1 0 0 2 1 1 0 0 0 0 1 0 0 0 0
2 3 2 0 1 0 1 2 1 0 0 0 0 0 1 0 0 0
2 1 3 3 2 1 3 2 1 0 0 0 0 0 0 1 0 0
1 2 3 2 3 1 2 3 1 0 0 0 0 0 0 0 1 0
1 1 2 0 0 3 3 3 1 0 0 0 0 0 0 0 0 1
the automorphism group has order 16320
and is strongly generated by the following 8 elements:
(
1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 
0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 
, 0
, 
3 0 0 0 0 0 0 0 0 
0 3 0 0 0 0 0 0 0 
0 0 3 0 0 0 0 0 0 
3 1 1 1 2 2 2 0 0 
1 3 1 2 1 2 0 2 0 
1 1 3 2 2 1 0 0 2 
3 1 1 2 0 0 1 2 2 
1 3 1 0 2 0 2 1 2 
1 1 3 0 0 2 2 2 1 
, 1
, 
3 0 0 0 0 0 0 0 0 
0 3 0 0 0 0 0 0 0 
2 2 1 3 3 2 0 0 3 
0 0 0 0 2 0 0 0 0 
0 0 0 2 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 
3 1 1 2 0 0 1 2 2 
1 3 1 0 2 0 2 1 2 
0 0 0 0 0 1 0 0 0 
, 1
, 
3 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
1 3 2 2 1 3 2 1 3 
0 0 0 0 0 0 0 2 0 
1 1 2 3 3 1 0 0 3 
1 2 1 0 3 0 3 1 3 
0 0 0 0 2 0 0 0 0 
1 1 2 0 0 3 3 3 1 
1 2 1 3 1 3 0 3 0 
, 0
, 
2 0 0 0 0 0 0 0 0 
2 3 3 1 0 0 3 1 1 
0 0 0 0 0 1 0 0 0 
0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 3 0 
3 2 3 0 1 0 1 3 1 
1 3 1 2 1 2 0 2 0 
1 2 3 3 1 2 3 1 2 
1 2 2 2 3 3 3 0 0 
, 1
, 
3 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 
0 0 0 0 0 0 0 2 0 
0 1 0 0 0 0 0 0 0 
0 0 0 3 0 0 0 0 0 
0 0 0 0 0 0 3 0 0 
1 3 2 2 1 3 2 1 3 
3 2 2 1 0 0 2 1 1 
3 2 2 2 1 1 1 0 0 
, 0
, 
3 2 3 1 3 1 0 1 0 
2 3 3 3 1 1 1 0 0 
3 3 2 1 1 3 0 0 1 
0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 2 0 0 
0 0 0 0 0 0 0 0 2 
0 1 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
, 1
, 
3 3 2 0 0 1 1 1 3 
2 3 1 1 2 3 1 2 3 
0 0 0 0 0 0 3 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 2 0 
0 0 0 0 0 0 0 0 3 
0 0 2 0 0 0 0 0 0 
0 0 0 3 0 0 0 0 0 
3 2 3 0 1 0 1 3 1 
, 1
)
acting on the columns of the generator matrix as follows (in order):
(4, 7)(5, 8)(6, 9)(11, 14)(12, 15)(13, 18), 
(4, 14, 7, 11)(5, 15, 8, 12)(6, 18, 9, 13)(16, 17), 
(3, 6, 9, 13)(4, 5)(7, 17, 12, 14)(8, 16, 11, 15), 
(3, 17, 16)(4, 13, 5, 7, 18, 8)(6, 14, 12, 9, 11, 15), 
(2, 12, 7, 14)(3, 4, 15, 6)(5, 13, 16, 8)(9, 11), 
(2, 4, 5)(3, 14, 8)(6, 16, 7)(9, 17, 11)(12, 13, 15), 
(1, 8, 4, 12)(2, 7, 5, 11)(3, 9, 6, 13)(14, 15), 
(1, 17, 14, 15, 9, 6, 16, 2, 12, 11, 13, 18)(3, 7)(4, 8, 5)
orbits: { 1, 12, 18, 15, 8, 17, 14, 2, 4, 13, 6, 7, 5, 11, 16, 3, 9 }, { 10 }