the 1 isometry classes of irreducible [9,2,7]_4 codes are:

code no       1:
================
1 1 1 1 1 1 1 1 0
3 3 2 2 1 1 0 0 1
the automorphism group has order 384
and is strongly generated by the following 6 elements:
(
1 0 0 0 0 0 0 
0 1 0 0 0 0 0 
0 0 1 0 0 0 0 
0 0 0 1 0 0 0 
0 0 0 0 1 0 0 
0 0 0 0 0 1 0 
1 1 1 1 1 1 1 
, 0
, 
2 0 0 0 0 0 0 
0 2 0 0 0 0 0 
0 0 2 0 0 0 0 
0 0 0 2 0 0 0 
0 0 0 0 0 2 0 
0 0 0 0 2 0 0 
0 0 0 0 0 0 2 
, 0
, 
3 0 0 0 0 0 0 
0 3 0 0 0 0 0 
0 0 3 0 0 0 0 
0 0 0 3 0 0 0 
0 0 0 0 0 0 3 
3 3 3 3 3 3 3 
0 0 0 0 0 3 0 
, 1
, 
1 0 0 0 0 0 0 
0 1 0 0 0 0 0 
0 0 0 1 0 0 0 
0 0 1 0 0 0 0 
0 0 0 0 1 0 0 
0 0 0 0 0 1 0 
0 0 0 0 0 0 1 
, 0
, 
2 0 0 0 0 0 0 
0 2 0 0 0 0 0 
0 0 0 0 0 2 0 
0 0 0 0 2 0 0 
0 0 0 2 0 0 0 
0 0 2 0 0 0 0 
0 0 0 0 0 0 2 
, 1
, 
0 0 1 0 0 0 0 
0 0 0 1 0 0 0 
0 1 0 0 0 0 0 
1 0 0 0 0 0 0 
0 0 0 0 0 1 0 
0 0 0 0 1 0 0 
1 1 1 1 1 1 1 
, 1
)
acting on the columns of the generator matrix as follows (in order):
(7, 8), 
(5, 6), 
(5, 8, 6, 7), 
(3, 4), 
(3, 6)(4, 5), 
(1, 4, 2, 3)(5, 6)(7, 8)
orbits: { 1, 3, 4, 6, 2, 5, 8, 7 }, { 9 }