the 42 isometry classes of irreducible [23,20,3]_5 codes are:

code no       1:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 40
and is strongly generated by the following 3 elements:
(
1 0 0 
0 4 0 
4 0 4 
, 
2 0 0 
1 2 0 
2 0 2 
, 
1 0 0 
3 4 2 
1 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(3, 9)(4, 13)(5, 8)(6, 7)(10, 12)(14, 16)(17, 18)(19, 21)(22, 23), 
(2, 6, 8, 5, 7)(3, 12, 11, 10, 9)(4, 14, 15, 16, 13)(17, 20, 18, 21, 19), 
(2, 12, 16, 21)(3, 4, 19, 5)(6, 9, 15, 17)(7, 10, 13, 20)(8, 11, 14, 18)
orbits: { 1 }, { 2, 7, 21, 6, 5, 20, 19, 18, 16, 17, 8, 13, 4, 14, 15, 12, 10, 3, 11, 9 }, { 22, 23 }

code no       2:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
0 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 32
and is strongly generated by the following 3 elements:
(
4 0 0 
0 3 0 
0 0 3 
, 
4 0 0 
0 3 0 
0 4 2 
, 
1 0 0 
0 4 2 
0 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(4, 14, 16, 15)(5, 6, 8, 7)(9, 10, 12, 11)(18, 19, 21, 20), 
(3, 17)(4, 15, 16, 14)(5, 6, 8, 7)(9, 20, 12, 19)(10, 18, 11, 21)(22, 23), 
(2, 3, 13, 17)(4, 21, 7, 11)(5, 9, 14, 20)(6, 10, 16, 18)(8, 12, 15, 19)
orbits: { 1 }, { 2, 17, 3, 13 }, { 4, 15, 14, 11, 16, 12, 9, 18, 7, 10, 20, 8, 19, 5, 21, 6 }, { 22, 23 }

code no       3:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
4 0 0 
4 1 0 
0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(2, 8)(4, 15)(5, 7)(9, 12)(10, 11)(13, 16)(17, 20)(18, 19)(21, 23)
orbits: { 1 }, { 2, 8 }, { 3 }, { 4, 15 }, { 5, 7 }, { 6 }, { 9, 12 }, { 10, 11 }, { 13, 16 }, { 14 }, { 17, 20 }, { 18, 19 }, { 21, 23 }, { 22 }

code no       4:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
0 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }, { 23 }

code no       5:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }, { 23 }

code no       6:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
2 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
4 0 0 
3 1 0 
2 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(2, 7)(3, 10)(4, 16)(5, 6)(11, 12)(14, 15)(17, 20)(18, 19)(21, 22)
orbits: { 1 }, { 2, 7 }, { 3, 10 }, { 4, 16 }, { 5, 6 }, { 8 }, { 9 }, { 11, 12 }, { 13 }, { 14, 15 }, { 17, 20 }, { 18, 19 }, { 21, 22 }, { 23 }

code no       7:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
0 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }, { 23 }

code no       8:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 4
and is strongly generated by the following 2 elements:
(
4 0 0 
0 1 0 
2 0 1 
, 
2 0 0 
4 0 4 
3 4 0 
)
acting on the columns of the generator matrix as follows (in order):
(3, 10)(5, 8)(6, 7)(11, 12)(13, 14)(15, 16)(17, 19)(20, 22), 
(2, 9)(3, 7, 10, 6)(5, 11, 8, 12)(13, 16, 14, 15)(17, 20, 19, 22)(18, 21)
orbits: { 1 }, { 2, 9 }, { 3, 10, 6, 7 }, { 4 }, { 5, 8, 12, 11 }, { 13, 14, 15, 16 }, { 17, 19, 22, 20 }, { 18, 21 }, { 23 }

code no       9:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
0 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 8
and is strongly generated by the following 3 elements:
(
4 0 0 
4 1 0 
4 0 1 
, 
1 0 0 
0 0 1 
0 1 0 
, 
0 3 2 
3 0 2 
0 0 2 
)
acting on the columns of the generator matrix as follows (in order):
(2, 8)(3, 12)(4, 14)(5, 7)(9, 11)(13, 15)(17, 19)(20, 21), 
(2, 3)(5, 9)(6, 10)(7, 11)(8, 12)(17, 20)(18, 22)(19, 21), 
(1, 23)(2, 12)(4, 22)(5, 19)(6, 15)(7, 21)(9, 17)(10, 13)(11, 20)(14, 18)
orbits: { 1, 23 }, { 2, 8, 3, 12 }, { 4, 14, 22, 18 }, { 5, 7, 9, 19, 11, 21, 17, 20 }, { 6, 10, 15, 13 }, { 16 }

code no      10:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
4 0 0 
4 0 1 
4 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(2, 12)(3, 8)(4, 14)(5, 11)(6, 10)(7, 9)(13, 15)(17, 21)(18, 22)(19, 20)
orbits: { 1 }, { 2, 12 }, { 3, 8 }, { 4, 14 }, { 5, 11 }, { 6, 10 }, { 7, 9 }, { 13, 15 }, { 16 }, { 17, 21 }, { 18, 22 }, { 19, 20 }, { 23 }

code no      11:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
2 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
4 0 0 
4 0 1 
4 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(2, 12)(3, 8)(4, 14)(5, 11)(6, 10)(7, 9)(13, 15)(17, 21)(18, 22)(19, 20)
orbits: { 1 }, { 2, 12 }, { 3, 8 }, { 4, 14 }, { 5, 11 }, { 6, 10 }, { 7, 9 }, { 13, 15 }, { 16 }, { 17, 21 }, { 18, 22 }, { 19, 20 }, { 23 }

code no      12:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
0 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
0 1 0 
1 0 0 
0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(1, 2)(6, 7)(9, 13)(10, 17)(11, 20)(12, 22)(14, 18)(15, 21)(16, 23)
orbits: { 1, 2 }, { 3 }, { 4 }, { 5 }, { 6, 7 }, { 8 }, { 9, 13 }, { 10, 17 }, { 11, 20 }, { 12, 22 }, { 14, 18 }, { 15, 21 }, { 16, 23 }, { 19 }

code no      13:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
0 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
2 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
4 0 0 
1 4 4 
3 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(2, 16)(3, 11)(4, 6)(5, 13)(7, 14)(8, 15)(9, 10)(20, 23)(21, 22)
orbits: { 1 }, { 2, 16 }, { 3, 11 }, { 4, 6 }, { 5, 13 }, { 7, 14 }, { 8, 15 }, { 9, 10 }, { 12 }, { 17 }, { 18 }, { 19 }, { 20, 23 }, { 21, 22 }

code no      14:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
2 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }, { 23 }

code no      15:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
3 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
4 0 0 
4 4 4 
2 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(2, 4)(3, 10)(5, 14)(6, 15)(7, 16)(8, 13)(11, 12)(20, 23)(21, 22)
orbits: { 1 }, { 2, 4 }, { 3, 10 }, { 5, 14 }, { 6, 15 }, { 7, 16 }, { 8, 13 }, { 9 }, { 11, 12 }, { 17 }, { 18 }, { 19 }, { 20, 23 }, { 21, 22 }

code no      16:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 4
and is strongly generated by the following 2 elements:
(
1 0 0 
4 4 4 
0 0 1 
, 
4 0 0 
3 4 4 
4 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(2, 4)(5, 13)(6, 16)(7, 15)(8, 14)(17, 19)(20, 23)(21, 22), 
(2, 14)(3, 12)(4, 8)(5, 15)(6, 16)(7, 13)(9, 11)(20, 22)(21, 23)
orbits: { 1 }, { 2, 4, 14, 8 }, { 3, 12 }, { 5, 13, 15, 7 }, { 6, 16 }, { 9, 11 }, { 10 }, { 17, 19 }, { 18 }, { 20, 23, 22, 21 }

code no      17:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
0 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
4 0 0 
0 4 4 
0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(2, 13)(4, 5)(6, 14)(7, 15)(8, 16)(9, 12)(10, 11)(20, 22)(21, 23)
orbits: { 1 }, { 2, 13 }, { 3 }, { 4, 5 }, { 6, 14 }, { 7, 15 }, { 8, 16 }, { 9, 12 }, { 10, 11 }, { 17 }, { 18 }, { 19 }, { 20, 22 }, { 21, 23 }

code no      18:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
0 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
4 0 0 
2 4 4 
1 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(2, 15)(3, 9)(4, 7)(5, 16)(6, 13)(8, 14)(10, 12)(20, 23)(21, 22)
orbits: { 1 }, { 2, 15 }, { 3, 9 }, { 4, 7 }, { 5, 16 }, { 6, 13 }, { 8, 14 }, { 10, 12 }, { 11 }, { 17 }, { 18 }, { 19 }, { 20, 23 }, { 21, 22 }

code no      19:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
3 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 8
and is strongly generated by the following 3 elements:
(
1 0 0 
0 4 0 
3 0 4 
, 
4 0 0 
1 1 1 
0 0 4 
, 
4 0 4 
0 1 3 
2 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(3, 10)(5, 8)(6, 7)(11, 12)(13, 14)(15, 16)(17, 19)(20, 21)(22, 23), 
(2, 4)(5, 13)(6, 16)(7, 15)(8, 14)(17, 19)(20, 23)(21, 22), 
(1, 9)(2, 19, 4, 17)(3, 10)(5, 22, 13, 21)(6, 7, 16, 15)(8, 20, 14, 23)
orbits: { 1, 9 }, { 2, 4, 17, 19 }, { 3, 10 }, { 5, 8, 13, 21, 14, 23, 22, 20 }, { 6, 7, 16, 15 }, { 11, 12 }, { 18 }

code no      20:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 8
and is strongly generated by the following 3 elements:
(
1 0 0 
0 4 0 
2 0 4 
, 
4 0 0 
0 2 0 
2 0 2 
, 
1 0 0 
2 0 3 
1 3 0 
)
acting on the columns of the generator matrix as follows (in order):
(3, 11)(4, 14)(5, 8)(6, 7)(9, 10)(13, 15)(16, 19)(17, 18)(20, 23)(21, 22), 
(3, 10, 11, 9)(4, 13, 14, 15)(5, 7, 8, 6)(16, 18, 19, 17)(20, 22, 23, 21), 
(2, 12)(3, 7, 11, 6)(4, 13, 14, 15)(5, 10, 8, 9)(16, 23, 19, 20)(17, 22, 18, 21)
orbits: { 1 }, { 2, 12 }, { 3, 11, 9, 6, 10, 7, 8, 5 }, { 4, 14, 15, 13 }, { 16, 19, 17, 20, 18, 23, 21, 22 }

code no      21:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
4 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
1 0 0 
2 0 1 
3 1 0 
)
acting on the columns of the generator matrix as follows (in order):
(2, 10)(3, 7)(5, 11)(6, 12)(8, 9)(16, 21)(17, 23)(18, 22)(19, 20)
orbits: { 1 }, { 2, 10 }, { 3, 7 }, { 4 }, { 5, 11 }, { 6, 12 }, { 8, 9 }, { 13 }, { 14 }, { 15 }, { 16, 21 }, { 17, 23 }, { 18, 22 }, { 19, 20 }

code no      22:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
0 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
0 1 0 
1 0 0 
0 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(1, 2)(6, 7)(9, 13)(10, 16)(11, 20)(12, 23)(14, 17)(15, 21)(19, 22)
orbits: { 1, 2 }, { 3 }, { 4 }, { 5 }, { 6, 7 }, { 8 }, { 9, 13 }, { 10, 16 }, { 11, 20 }, { 12, 23 }, { 14, 17 }, { 15, 21 }, { 18 }, { 19, 22 }

code no      23:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }, { 23 }

code no      24:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
2 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 4
and is strongly generated by the following 1 elements:
(
0 3 0 
2 4 1 
3 3 0 
)
acting on the columns of the generator matrix as follows (in order):
(1, 12, 23, 2)(3, 4, 18, 5)(6, 10)(7, 9, 19, 22)(8, 11, 20, 14)(13, 15, 21, 16)
orbits: { 1, 2, 23, 12 }, { 3, 5, 18, 4 }, { 6, 10 }, { 7, 22, 19, 9 }, { 8, 14, 20, 11 }, { 13, 16, 21, 15 }, { 17 }

code no      25:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
3 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
3 0 2 
4 2 3 
0 0 2 
)
acting on the columns of the generator matrix as follows (in order):
(1, 12)(2, 23)(6, 13)(7, 22)(8, 17)(9, 10)(14, 20)(15, 19)(16, 21)
orbits: { 1, 12 }, { 2, 23 }, { 3 }, { 4 }, { 5 }, { 6, 13 }, { 7, 22 }, { 8, 17 }, { 9, 10 }, { 11 }, { 14, 20 }, { 15, 19 }, { 16, 21 }, { 18 }

code no      26:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
4 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }, { 23 }

code no      27:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
4 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
3 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }, { 23 }

code no      28:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
4 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
3 3 2 
0 1 2 
0 4 4 
)
acting on the columns of the generator matrix as follows (in order):
(1, 23)(2, 20)(3, 13)(5, 14)(6, 17)(7, 11)(9, 19)(12, 21)(15, 18)
orbits: { 1, 23 }, { 2, 20 }, { 3, 13 }, { 4 }, { 5, 14 }, { 6, 17 }, { 7, 11 }, { 8 }, { 9, 19 }, { 10 }, { 12, 21 }, { 15, 18 }, { 16 }, { 22 }

code no      29:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
0 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
3 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
1 4 0 
0 4 0 
0 4 1 
)
acting on the columns of the generator matrix as follows (in order):
(1, 8)(3, 22)(4, 17)(5, 6)(9, 21)(10, 18)(11, 15)(13, 20)(19, 23)
orbits: { 1, 8 }, { 2 }, { 3, 22 }, { 4, 17 }, { 5, 6 }, { 7 }, { 9, 21 }, { 10, 18 }, { 11, 15 }, { 12 }, { 13, 20 }, { 14 }, { 16 }, { 19, 23 }

code no      30:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
2 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }, { 23 }

code no      31:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }, { 23 }

code no      32:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
3 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
4 4 1 
0 3 1 
0 2 2 
)
acting on the columns of the generator matrix as follows (in order):
(1, 23)(2, 20)(3, 13)(5, 14)(6, 17)(7, 11)(9, 19)(12, 21)(15, 18)
orbits: { 1, 23 }, { 2, 20 }, { 3, 13 }, { 4 }, { 5, 14 }, { 6, 17 }, { 7, 11 }, { 8 }, { 9, 19 }, { 10 }, { 12, 21 }, { 15, 18 }, { 16 }, { 22 }

code no      33:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
4 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
1 4 1 
4 2 2 
4 3 1 
)
acting on the columns of the generator matrix as follows (in order):
(1, 23)(2, 14)(3, 22)(5, 16)(6, 12)(8, 21)(9, 13)(10, 18)(15, 17)(19, 20)
orbits: { 1, 23 }, { 2, 14 }, { 3, 22 }, { 4 }, { 5, 16 }, { 6, 12 }, { 7 }, { 8, 21 }, { 9, 13 }, { 10, 18 }, { 11 }, { 15, 17 }, { 19, 20 }

code no      34:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 1
and is strongly generated by the following 0 elements:
(
)
acting on the columns of the generator matrix as follows (in order):
orbits: { 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 }, { 7 }, { 8 }, { 9 }, { 10 }, { 11 }, { 12 }, { 13 }, { 14 }, { 15 }, { 16 }, { 17 }, { 18 }, { 19 }, { 20 }, { 21 }, { 22 }, { 23 }

code no      35:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
3 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
2 4 2 
2 0 3 
2 1 2 
)
acting on the columns of the generator matrix as follows (in order):
(1, 17)(2, 12)(3, 20)(4, 11)(6, 23)(7, 21)(8, 13)(10, 22)(15, 19)(16, 18)
orbits: { 1, 17 }, { 2, 12 }, { 3, 20 }, { 4, 11 }, { 5 }, { 6, 23 }, { 7, 21 }, { 8, 13 }, { 9 }, { 10, 22 }, { 14 }, { 15, 19 }, { 16, 18 }

code no      36:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 4
and is strongly generated by the following 2 elements:
(
4 0 0 
4 0 1 
4 1 0 
, 
4 0 0 
4 1 0 
4 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(2, 12)(3, 8)(4, 14)(5, 11)(6, 10)(7, 9)(13, 15)(16, 20)(17, 21)(18, 19), 
(2, 8)(3, 12)(4, 14)(5, 7)(9, 11)(13, 15)(16, 18)(19, 20)(22, 23)
orbits: { 1 }, { 2, 12, 8, 3 }, { 4, 14 }, { 5, 11, 7, 9 }, { 6, 10 }, { 13, 15 }, { 16, 20, 18, 19 }, { 17, 21 }, { 22, 23 }

code no      37:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
2 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
3 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 4
and is strongly generated by the following 2 elements:
(
4 0 0 
4 0 1 
4 1 0 
, 
4 0 0 
4 1 0 
4 0 1 
)
acting on the columns of the generator matrix as follows (in order):
(2, 12)(3, 8)(4, 14)(5, 11)(6, 10)(7, 9)(13, 15)(16, 20)(17, 21)(18, 19), 
(2, 8)(3, 12)(4, 14)(5, 7)(9, 11)(13, 15)(16, 18)(19, 20)(22, 23)
orbits: { 1 }, { 2, 12, 8, 3 }, { 4, 14 }, { 5, 11, 7, 9 }, { 6, 10 }, { 13, 15 }, { 16, 20, 18, 19 }, { 17, 21 }, { 22, 23 }

code no      38:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
2 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
3 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 2
and is strongly generated by the following 1 elements:
(
3 0 3 
0 4 0 
4 0 2 
)
acting on the columns of the generator matrix as follows (in order):
(1, 9)(3, 10)(4, 7)(5, 20)(6, 21)(8, 17)(13, 18)(14, 19)(15, 23)(16, 22)
orbits: { 1, 9 }, { 2 }, { 3, 10 }, { 4, 7 }, { 5, 20 }, { 6, 21 }, { 8, 17 }, { 11 }, { 12 }, { 13, 18 }, { 14, 19 }, { 15, 23 }, { 16, 22 }

code no      39:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
2 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 4
and is strongly generated by the following 2 elements:
(
3 1 3 
0 1 0 
4 2 2 
, 
2 3 0 
3 0 1 
4 2 0 
)
acting on the columns of the generator matrix as follows (in order):
(1, 17)(3, 14)(4, 7)(5, 21)(6, 20)(8, 9)(10, 19)(12, 23)(13, 22)(16, 18), 
(1, 9, 17, 8)(2, 11)(3, 20, 14, 6)(4, 23, 7, 12)(5, 10, 21, 19)(13, 16, 22, 18)
orbits: { 1, 17, 8, 9 }, { 2, 11 }, { 3, 14, 6, 20 }, { 4, 7, 12, 23 }, { 5, 21, 19, 10 }, { 13, 22, 18, 16 }, { 15 }

code no      40:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
0 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
3 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 8
and is strongly generated by the following 3 elements:
(
4 0 0 
1 0 4 
4 4 0 
, 
0 4 4 
4 0 1 
0 0 4 
, 
0 0 1 
0 1 0 
1 0 0 
)
acting on the columns of the generator matrix as follows (in order):
(2, 12)(3, 5)(6, 9)(7, 10)(8, 11)(16, 20)(17, 19)(18, 21)(22, 23), 
(1, 13)(2, 12)(6, 17)(7, 23)(8, 20)(9, 19)(10, 22)(11, 16)(14, 15), 
(1, 3)(5, 13)(6, 19)(7, 16)(8, 22)(10, 11)(14, 21)(15, 18)(20, 23)
orbits: { 1, 13, 3, 5 }, { 2, 12 }, { 4 }, { 6, 9, 17, 19 }, { 7, 10, 23, 16, 22, 11, 20, 8 }, { 14, 15, 21, 18 }

code no      41:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
0 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
2 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
3 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 8
and is strongly generated by the following 3 elements:
(
4 0 0 
4 0 1 
4 1 0 
, 
1 0 0 
2 4 0 
0 0 4 
, 
1 0 0 
1 0 3 
3 2 0 
)
acting on the columns of the generator matrix as follows (in order):
(2, 12)(3, 8)(4, 14)(5, 11)(6, 10)(7, 9)(13, 15)(16, 18)(17, 19), 
(2, 7)(4, 14)(5, 6)(9, 12)(10, 11)(13, 15)(16, 17)(18, 19)(20, 21)(22, 23), 
(2, 10)(3, 8)(4, 20)(5, 12)(6, 9)(7, 11)(13, 22)(14, 21)(15, 23)(18, 19)
orbits: { 1 }, { 2, 12, 7, 10, 9, 5, 11, 6 }, { 3, 8 }, { 4, 14, 20, 21 }, { 13, 15, 22, 23 }, { 16, 18, 17, 19 }

code no      42:
================
1 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
4 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0
0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
4 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
2 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
the automorphism group has order 40
and is strongly generated by the following 3 elements:
(
1 0 0 
0 4 2 
0 3 3 
, 
1 0 0 
4 2 0 
4 1 1 
, 
3 2 3 
2 4 2 
2 2 4 
)
acting on the columns of the generator matrix as follows (in order):
(2, 11, 3, 18, 14)(4, 10, 19, 17, 7)(5, 12, 8, 21, 16)(6, 13, 9, 20, 15), 
(2, 5, 7, 6)(3, 16, 19, 13)(4, 9, 14, 21)(8, 17, 20, 11)(10, 15, 18, 12), 
(1, 22)(2, 5, 17, 15)(3, 12, 10, 20)(4, 6, 18, 16)(7, 9, 14, 8)(11, 21, 19, 13)
orbits: { 1, 22 }, { 2, 14, 6, 15, 18, 9, 7, 4, 20, 10, 17, 3, 13, 5, 8, 21, 16, 12, 19, 11 }, { 23 }