the 1 isometry classes of irreducible [7,1,7]_8 codes are:

code no       1:
================
1 1 1 1 1 1 1
the automorphism group has order 15120
and is strongly generated by the following 10 elements:
(
6 0 0 0 0 0 
0 6 0 0 0 0 
0 0 6 0 0 0 
0 0 0 6 0 0 
0 0 0 0 6 0 
0 0 0 0 0 6 
, 2
, 
7 0 0 0 0 0 
0 7 0 0 0 0 
0 0 7 0 0 0 
0 0 0 7 0 0 
0 0 0 0 7 0 
7 7 7 7 7 7 
, 2
, 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 0 1 
0 0 0 0 1 0 
, 0
, 
2 0 0 0 0 0 
0 2 0 0 0 0 
0 0 2 0 0 0 
0 0 0 0 0 2 
0 0 0 0 2 0 
0 0 0 2 0 0 
, 1
, 
3 0 0 0 0 0 
0 3 0 0 0 0 
0 0 0 3 0 0 
0 0 0 0 0 3 
0 0 3 0 0 0 
0 0 0 0 3 0 
, 0
, 
5 0 0 0 0 0 
0 5 0 0 0 0 
5 5 5 5 5 5 
0 0 0 5 0 0 
0 0 0 0 5 0 
0 0 0 0 0 5 
, 1
, 
1 0 0 0 0 0 
0 0 0 0 0 1 
0 0 0 1 0 0 
0 0 1 0 0 0 
0 0 0 0 1 0 
0 1 0 0 0 0 
, 1
, 
6 0 0 0 0 0 
0 0 0 0 6 0 
0 0 0 6 0 0 
0 6 0 0 0 0 
0 0 6 0 0 0 
0 0 0 0 0 6 
, 0
, 
0 4 0 0 0 0 
0 0 0 0 4 0 
0 0 0 0 0 4 
4 0 0 0 0 0 
0 0 4 0 0 0 
0 0 0 4 0 0 
, 2
, 
1 1 1 1 1 1 
0 0 0 0 0 1 
0 0 1 0 0 0 
0 0 0 0 1 0 
1 0 0 0 0 0 
0 1 0 0 0 0 
, 0
)
acting on the columns of the generator matrix as follows (in order):
id, 
(6, 7), 
(5, 6), 
(4, 6), 
(3, 5, 6, 4), 
(3, 7), 
(2, 6)(3, 4), 
(2, 4, 3, 5), 
(1, 4, 6, 3, 5, 2), 
(1, 5, 4, 7)(2, 6)
orbits: { 1, 2, 7, 6, 5, 3, 4 }