the 2 isometry classes of irreducible [10,5,6]_9 codes are:

code no       1:
================
1 1 1 1 1 2 0 0 0 0
5 4 3 2 1 0 2 0 0 0
4 7 6 3 1 0 0 2 0 0
6 8 4 5 1 0 0 0 2 0
7 2 8 6 1 0 0 0 0 2
the automorphism group has order 1440
and is strongly generated by the following 8 elements:
(
5 0 0 0 0 
0 5 0 0 0 
0 0 5 0 0 
7 1 6 8 2 
7 8 2 1 6 
, 1
, 
8 0 0 0 0 
0 8 0 0 0 
4 1 3 6 7 
8 8 8 8 8 
4 7 1 3 6 
, 1
, 
3 0 0 0 0 
0 6 0 0 0 
0 0 0 6 0 
3 2 7 8 4 
3 4 2 7 8 
, 1
, 
8 0 0 0 0 
4 3 6 7 1 
8 8 8 8 8 
4 1 3 6 7 
0 0 0 0 8 
, 1
, 
8 0 0 0 0 
0 0 4 0 0 
0 0 0 0 4 
8 2 5 3 6 
8 5 3 6 2 
, 0
, 
2 0 0 0 0 
1 5 8 3 7 
2 2 2 2 2 
1 7 5 8 3 
0 0 0 2 0 
, 1
, 
5 2 1 4 3 
7 8 6 1 2 
0 0 0 5 0 
5 5 5 5 5 
0 0 0 0 5 
, 0
, 
6 4 5 1 8 
3 7 2 4 8 
0 0 0 3 0 
0 0 3 0 0 
3 4 8 7 2 
, 0
)
acting on the columns of the generator matrix as follows (in order):
(4, 10)(5, 8)(6, 9), 
(3, 8)(4, 6)(5, 7), 
(3, 6, 7, 4)(5, 9, 8, 10), 
(2, 9)(3, 6)(4, 8), 
(2, 6, 7, 4, 9, 8, 5, 3), 
(2, 6, 3, 8, 7, 10)(4, 5, 9), 
(1, 6, 4, 3, 7, 2, 8, 9), 
(1, 10)(2, 7)(3, 4)(5, 9)
orbits: { 1, 9, 10, 6, 5, 2, 4, 8, 7, 3 }

code no       2:
================
1 1 1 1 1 2 0 0 0 0
5 4 3 2 1 0 2 0 0 0
8 5 6 4 1 0 0 2 0 0
6 8 2 7 1 0 0 0 2 0
7 3 5 8 1 0 0 0 0 2
the automorphism group has order 720
and is strongly generated by the following 5 elements:
(
4 0 0 0 0 
0 4 0 0 0 
6 8 2 7 1 
0 0 4 0 0 
1 8 7 2 6 
, 0
, 
6 0 0 0 0 
0 3 0 0 0 
2 3 1 4 5 
6 6 6 6 6 
0 0 6 0 0 
, 1
, 
1 0 0 0 0 
1 1 1 1 1 
6 1 5 4 8 
0 0 0 0 1 
4 1 6 8 5 
, 1
, 
5 0 0 0 0 
6 7 3 1 4 
0 7 0 0 0 
0 0 0 7 0 
1 7 6 4 3 
, 1
, 
2 5 3 8 6 
3 7 4 6 1 
0 0 7 0 0 
0 0 0 0 7 
7 7 7 7 7 
, 1
)
acting on the columns of the generator matrix as follows (in order):
(3, 4, 7, 9)(5, 10, 6, 8), 
(3, 5, 9, 8, 7, 6, 4, 10), 
(2, 9, 7, 3, 8, 5, 4, 6), 
(2, 3, 8, 7, 9, 5, 6, 10), 
(1, 7, 8, 2, 6, 5, 4, 9)
orbits: { 1, 9, 7, 5, 2, 4, 8, 3, 6, 10 }