the 1 isometry classes of irreducible [7,1,7]_9 codes are:

code no       1:
================
1 1 1 1 1 1 2
the automorphism group has order 10080
and is strongly generated by the following 9 elements:
(
2 0 0 0 0 0 
0 2 0 0 0 0 
0 0 2 0 0 0 
0 0 0 2 0 0 
0 0 0 0 2 0 
0 0 0 0 0 2 
, 1
, 
3 0 0 0 0 0 
0 3 0 0 0 0 
0 0 3 0 0 0 
0 0 0 3 0 0 
0 0 0 0 3 0 
6 6 6 6 6 6 
, 0
, 
8 0 0 0 0 0 
0 8 0 0 0 0 
0 0 8 0 0 0 
0 0 0 8 0 0 
0 0 0 0 0 8 
0 0 0 0 8 0 
, 1
, 
4 0 0 0 0 0 
0 4 0 0 0 0 
0 0 4 0 0 0 
0 0 0 4 0 0 
8 8 8 8 8 8 
0 0 0 0 4 0 
, 1
, 
7 0 0 0 0 0 
0 7 0 0 0 0 
0 0 7 0 0 0 
0 0 0 0 0 7 
0 0 0 7 0 0 
0 0 0 0 7 0 
, 0
, 
2 0 0 0 0 0 
0 2 0 0 0 0 
0 0 0 0 2 0 
0 0 0 0 0 2 
0 0 2 0 0 0 
0 0 0 2 0 0 
, 1
, 
6 0 0 0 0 0 
0 0 6 0 0 0 
0 6 0 0 0 0 
0 0 0 0 6 0 
0 0 0 0 0 6 
0 0 0 6 0 0 
, 0
, 
0 0 0 0 0 4 
0 0 0 4 0 0 
0 0 4 0 0 0 
0 0 0 0 4 0 
4 0 0 0 0 0 
0 4 0 0 0 0 
, 0
, 
1 1 1 1 1 1 
0 2 0 0 0 0 
0 0 0 0 0 2 
0 0 0 2 0 0 
0 0 2 0 0 0 
0 0 0 0 2 0 
, 1
)
acting on the columns of the generator matrix as follows (in order):
id, 
(6, 7), 
(5, 6), 
(5, 6, 7), 
(4, 5, 6), 
(3, 5)(4, 6), 
(2, 3)(4, 6, 5), 
(1, 5, 4, 2, 6), 
(1, 7)(3, 5, 6)
orbits: { 1, 6, 7, 5, 4, 2, 3 }